Compare commits

..

38 Commits

Author SHA1 Message Date
alexander
f73195234f added complex komonent list
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 23s
2026-02-04 08:42:11 +01:00
alexander
c169e3eca4 Added float diagram
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 22s
2026-02-03 23:15:10 +01:00
alexander
fb472fb022 Added raw blocks for nice view
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 21s
2026-02-03 22:20:27 +01:00
alexander
5356c01c04 Fixed range error
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
2026-02-03 19:25:15 +01:00
alexander
b5998fe513 Fixed Type in CT
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
2026-02-03 19:24:26 +01:00
alexander
7e30cfee79 Added CT good to know sheet
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Has been cancelled
2026-02-03 19:24:07 +01:00
alexander
83aa6764fe Merge branch 'main' of gitea.mintcalc.com:alexander/TUM-Formelsammlungen
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 22s
2026-02-02 14:46:23 +01:00
alexander
ad2c7f2919 started table 2026-02-02 14:45:59 +01:00
levi
c9a3cdfcdb added eintor liste
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 19s
2026-02-02 12:47:10 +01:00
levi
0d05a1a593 eintor liste 2026-02-02 12:45:39 +01:00
alexander
68b599eea4 Fixed complex
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 21s
2026-02-02 12:40:23 +01:00
alexander
d3e4df0a3f Moved Math macros to seperte file
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
2026-02-02 07:34:12 +01:00
alexander
446be9a38f removed allgemein from LinearAlgebra
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
2026-02-01 23:56:42 +01:00
alexander
72e31ef355 Added alot of linAlg
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 22s
2026-02-01 23:56:11 +01:00
alexander
d7703597bb Added Qullen Plot
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 25s
2026-02-01 11:49:45 +01:00
alexander
1573913f3f Added verschaltung
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
2026-01-31 19:17:45 +01:00
alexander
1c19402b01 Change stuff
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
2026-01-30 23:58:13 +01:00
alexander
d113b66dcd Added a lot of shit
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 19s
2026-01-30 21:47:21 +01:00
alexander
5a8d8dff75 started cmos in digitaltechnik
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 16s
2026-01-30 18:41:47 +01:00
alexander
636eeb2b9a updated schaltungstheorie
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 16s
2026-01-30 11:21:02 +01:00
alexander
3f9811c454 started adding verlustleistung to schaltungstheorie 2026-01-30 09:44:14 +01:00
alexander
776543c8ed levi added symbols
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 18s
2026-01-29 16:48:45 +01:00
alexander
0ce7c5d623 started reactive elements
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 19s
2026-01-29 09:41:06 +01:00
alexander
b08a40dddc SVD started
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 17s
2026-01-28 12:03:34 +01:00
alexander
52e2d52813 Started Newton Raphson
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 21s
2026-01-28 10:55:11 +01:00
alexander
195b64517f Adde partial bruch zwerlegung
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 17s
2026-01-27 19:23:46 +01:00
alexander
de36fc2841 Del Analysis1
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 13s
2026-01-26 00:21:02 +01:00
alexander
0fbfb477b3 started timming plot for registers
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
2026-01-26 00:19:59 +01:00
alexander
e724fd14cc Change names
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 14s
2026-01-25 23:11:08 +01:00
alexander
36ea2514a2 Added comments
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
2026-01-25 20:37:07 +01:00
alexander
9eb3d16c32 Finally added potenzreihen
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
2026-01-25 20:30:26 +01:00
alexander
62d6ce0e5c Erweiterung Analysis
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
2026-01-25 17:12:34 +01:00
alexander
1c7b4decdb Schaltungstheorie brrrrrrr
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 16s
2026-01-25 01:43:59 +01:00
alexander
d56fe69e9d Added digtaltechnik to publishing
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 11s
2026-01-24 16:07:15 +01:00
alexander
cdc9d721ec Added digtaltechnik to publishing
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 10s
2026-01-24 16:06:08 +01:00
alexander
c0ba6d9bcc build correct
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 10s
2026-01-24 15:56:17 +01:00
alexander
7db8bd3ce7 Merge branch 'main' of gitea.mintcalc.com:alexander/TUM-Formelsammlungen
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 13s
2026-01-24 11:52:19 +01:00
alexander
f53eaa776e added some stuff to analysis 2026-01-24 11:52:13 +01:00
15 changed files with 3386 additions and 4409 deletions

View File

@@ -29,15 +29,24 @@ jobs:
- name: Compile Analysis1 - name: Compile Analysis1
continue-on-error: true continue-on-error: true
run: typst compile --root src src/cheatsheets/Analysis1.typ "build/Analysis 1.pdf" run: typst compile --root src src/cheatsheets/Analysis1.typ "build/sem1-Analysis_1.pdf"
- name: Compile Schaltungstheorie - name: Compile Schaltungstheorie
continue-on-error: true continue-on-error: true
run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ "build/Schaltungstheorie.pdf" run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ "build/sem1-Schaltungstheorie.pdf"
- name: Compile LinAlg - name: Compile LinAlg
continue-on-error: true continue-on-error: true
run: typst compile --root src src/cheatsheets/LinearAlgebra.typ "build/Linear Algebra.pdf" run: typst compile --root src src/cheatsheets/LinearAlgebra.typ "build/sem1-Lineare-algebra.pdf"
- name: Compile Digtaltechnik
continue-on-error: true
run: typst compile --root src src/cheatsheets/Digitaltechnik.typ "build/sem1-Digitaltechnik.pdf"
- name: Compile CT
continue-on-error: true
run: typst compile --root src src/cheatsheets/CT.typ "build/sem1-Computertechnik.pdf"
- name: Create Gitea Release - name: Create Gitea Release
continue-on-error: true continue-on-error: true
@@ -46,3 +55,7 @@ jobs:
name: "Formelsammlungen PDFs" name: "Formelsammlungen PDFs"
tag_name: "latest" tag_name: "latest"
files: build/*.pdf files: build/*.pdf
- name: Trigger
continue-on-error: true
run: curl -u trigger:${{ secrets.TRIGGER_PASSWORD }} -X POST https://trigger.typst4ei.de/trigger/all

2
.gitignore vendored
View File

@@ -5,3 +5,5 @@ __pycache__/
package-lock.json package-lock.json
package.json package.json
*.pdf

File diff suppressed because one or more lines are too long

View File

@@ -1,10 +1,9 @@
#import "../lib/common_rewrite.typ" : *
#import "@preview/mannot:0.3.1" #import "@preview/mannot:0.3.1"
#show math.integral: it => math.limits(math.integral) #import "../lib/common_rewrite.typ" : *
#show math.sum: it => math.limits(math.sum) #import "../lib/mathExpressions.typ" : *
#set text(7pt) #set text(7.5pt)
#set page( #set page(
paper: "a4", paper: "a4",
@@ -42,38 +41,71 @@
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%) #let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
#columns(4, gutter: 2mm)[ #columns(5, gutter: 2mm)[
// Allgemeiner Shit
#bgBlock(fill: colorAllgemein)[ #bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Allgemeins] #subHeading(fill: colorAllgemein)[Allgemeins]
#grid(
columns: (1fr, 1fr),
inset: 0mm,
gutter: 2mm,
[
*Dreiecksungleichung* \ *Dreiecksungleichung* \
$abs(x + y) <= abs(x) + abs(y)$ \ $abs(x + y) <= abs(x) + abs(y)$ \
$abs(abs(x) - abs(y)) <= abs(x - y)$ \ $abs(abs(x) - abs(y)) <= abs(x - y)$ \
],
[
*Cauchy-Schwarz-Ungleichung*\ *Cauchy-Schwarz-Ungleichung*\
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \ $abs(x dot y) <= abs(abs(x) dot abs(y))$ \
],
[
*Geometrische Summenformel*\ *Geometrische Summenformel*\
$sum_(k=1)^(n) k = (n(n+1))/2$ \ $sum_(k=1)^(n) k = (n(n+1))/2$ \
],
[
*Bernoulli-Ungleichung* \ *Bernoulli-Ungleichung* \
$(1 + a)^n x in RR >= 1 + n a$ \ $(1 + a)^n x in RR >= 1 + n a$ \
],
[
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$ *Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
],
[
*Binomische Formel*\ *Binomische Formel*\
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
*Fakultäten* $0! = 1! = 1$ \ ],
*Gaußklammer*: \ [
$floor(x) = text("floor")(x)$ \
$ceil(x) = text("ceil")(x)$ \
*Bekannte Werte* \ *Bekannte Werte* \
$e approx 2.71828$ ($2 < e < 3$) \ $e approx 2.71828$ ($2 < e < 3$) \
$pi approx 3.14159$ ($3 < pi < 4$) $pi approx 3.14159$ ($3 < pi < 4$)
],
[
*Gaußklammer*: \
$floor(x) = text("floor")(x)$ \
$ceil(x) = text("ceil")(x)$ \
],
[
*Fakultäten* $0! = 1! = 1$ \
],
[
*Mitternachtsformel*
$x_(1,2) = (-b plus.minus sqrt(b^2 + 4a c))/(2a)$
],
[
*Binomische Formel*\
$(a + b)^2 = a^2 + 2a b + b^2$\
$(a - b)^2 = a^2 - 2a b + b^2$\
$(a + b)(a - b) = a^2 - b^2$\
]
)
] ]
// Complex Zahlen
#bgBlock(fill: colorAllgemein)[ #bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Complexe Zahlen] #subHeading(fill: colorAllgemein)[Complexe Zahlen]
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
$z^n = r^n dot e^(phi i dot n) = r^n (cos(n phi) + i sin(n phi))$ #ComplexNumbersSection()
#grid( #grid(
columns: (1fr, 1fr), columns: (1fr, 1fr),
@@ -81,12 +113,12 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $], [$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $], [$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
grid.cell( grid.cell(
colspan: 2, colspan: 1,
align: center, align: center,
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $ $ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
), ),
grid.cell( grid.cell(
colspan: 2, colspan: 1,
align: center, align: center,
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $ $ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
) )
@@ -96,7 +128,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
*Additionstheorem* \ *Additionstheorem* \
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \ $sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \ $cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \ $tan(x +y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \ $arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
$arctan(1/x) + arctan(x) = cases( $arctan(1/x) + arctan(x) = cases(
x > 0 : pi/2, x > 0 : pi/2,
@@ -108,19 +140,13 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
$sin(2x) = 2sin(x)cos(x)$ $sin(2x) = 2sin(x)cos(x)$
#grid( #grid(
gutter: 5mm, gutter: 2mm,
columns: (auto, auto), columns: (auto, auto, auto),
[$cos^2(x) = (1 + cos(2x))/2$], $cos^2(x) = (1 + cos(2x))/2$,
[$sin^2(x) = (1 - cos(2x))/2$] $sin^2(x) = (1 - cos(2x))/2$,
) $cos(-x) = cos(x)$,
$sin(-x) = -sin(x)$,
$cos^2(x) + sin^2(x) = 1$ grid.cell(colspan: 2, $cos^2(x) + sin^2(x) = 1$)
git config pull.rebase falsegit config pull.rebase false
#grid(
gutter: 5mm,
columns: (auto, auto),
[$cos(-x) = cos(x)$],
[$sin(-x) = -sin(x)$],
) )
Subsitution mit Hilfsvariable Subsitution mit Hilfsvariable
@@ -135,6 +161,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
[$cot(x)=-tan(x + pi/2)$], [$cot(x)=-tan(x + pi/2)$],
[$cos(x - pi/2) = sin(x)$], [$cos(x - pi/2) = sin(x)$],
[$sin(x + pi/2) = cos(x)$], [$sin(x + pi/2) = cos(x)$],
) )
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$ $sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
@@ -143,9 +170,9 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$ $arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
] ]
// Folgen Allgemein
#bgBlock(fill: colorFolgen)[ #bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen] #subHeading(fill: colorFolgen)[Folgen]
$ lim_(x -> infinity) a_n $
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$ *Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
- Beweiße: durch Induktion - Beweiße: durch Induktion
@@ -155,17 +182,14 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
*Monoton fallend/steigended* *Monoton fallend/steigended*
- Beweise: Induktion - Beweise: Induktion
#grid(columns: (1fr, 1fr), #grid(columns: (1fr, 1fr),
gutter: 1mm, inset: 0.2mm,
row-gutter: 2mm,
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]), align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
[$ a_(n+1) <= a_(n) $], [$ a_(n+1) <= a_(n), quad a_(n+1) >= a_(n) $],
[$ a_(n+1) >= a_(n) $], [$ a_(n+1)/a_(n) < 1, quad a_(n+1)/a_(n) > 1 $],
[$ a_(n+1)/a_(n) < 1 $],
[$ a_(n+1)/a_(n) > 1 $],
) )
*Konvergentz Allgemein* *Konvergentz Allgemein*
$ lim_(n -> infinity) a_n = a $ $lim_(n -> infinity) a_n = a$
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \ $forall epsilon > 0 space exists n_epsilon in NN$ sodass \
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $ - Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
@@ -177,33 +201,40 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
*Konvergentz Häufungspunkte* *Konvergentz Häufungspunkte*
- $a_n -> a <=>$ Alle Teilfolgen $-> a$ - $a_n -> a <=>$ Alle Teilfolgen $-> a$
*Konvergenz Beweißen* *Folgen in $CC$* (Alle Regeln von $RR$ gelten)\
- Monoton UND Beschränkt $=>$ Konvergenz - $z_n in CC : lim z_n <=> lim abs(z_n) = 0$
NICHT Umgekehert - Zerlegen in $a + b i$ oder $abs(z) dot e^(i phi)$
- (Cauchyfolge \
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
Cauchyfolge $=>$ Konvergenz)
- $a_n$ unbeschränkt $=>$ divergenz
] ]
// Folgen Strat
#bgBlock(fill: colorFolgen)[ #bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien] #subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
- Von Bekannten Ausdrücken aufbauen - Von Bekannten Ausdrücken aufbauen
- *Monoton UND Beschränkt $=>$ Konvergenz*
- Fixpunk Gleichung: $a = f(a)$ \ - Fixpunk Gleichung: $a = f(a)$ \
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!) für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \ - Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
$(1 + a)^n >= 1 + n a$ $(1 + a)^n >= 1 + n a$
- Sandwitchtheorem:\ - Sandwitchtheorem:\
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \ $b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
- Zwerlegen in Konvergente Teil folgen \ - Zwerlegen in Konvergente Teil folgen \
(Vorallem bei $(-1)^n dot a_n$) (Vorallem bei $(-1)^n dot a_n$)
- (Cauchyfolge \
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
Cauchyfolge $=>$ Konvergenz)
*L'Hospital* *Divergenz*
- $a_n$ unbeschränkt $=>$ divergenz
- Vergleichskriterium: \
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
]
// L'Hospital
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[L'Hospital]
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$ $x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
(Konvergenz gegen $b$, beliebiges $a$) (Konvergenz gegen $b$, beliebiges $a$)
@@ -211,16 +242,18 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
Bendingungen: Bendingungen:
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$ 1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
2. $g'(x) != 0, x in (a,b)$ 2. $g'(x) != 0, x in (a,b)$
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert 3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ konveriert
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$ $=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
Kann auch Reksuive angewendet werden! Kann auch Reksuive angewendet werden!
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
] ]
// Bekannte Folgen
#bgBlock(fill: colorFolgen)[ #bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Konvergent Folge Regeln] #subHeading(fill: colorFolgen)[Bekannte Folgen]
#grid( #grid(
columns: (auto, auto), columns: (auto, auto),
align: bottom, align: bottom,
@@ -235,10 +268,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $), MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $), MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
) )
]
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Bekannte Folgen]
#grid( #grid(
columns: (auto, auto), columns: (auto, auto),
column-gutter: 4mm, column-gutter: 4mm,
@@ -257,6 +287,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
) )
] ]
// Teilfolgen
#bgBlock(fill: colorFolgen)[ #bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Teilfolgen] #subHeading(fill: colorFolgen)[Teilfolgen]
$ a_k subset a_n space (text("z.B") k= 2n + 1) $ $ a_k subset a_n space (text("z.B") k= 2n + 1) $
@@ -266,6 +297,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent - Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
] ]
// Reihen
#bgBlock(fill: colorReihen)[ #bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Reihen] #subHeading(fill: colorReihen)[Reihen]
$limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \ $limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \
@@ -303,12 +335,35 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \ 2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$ divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
*Reihen in $CC$*
- Alles
] ]
// Potenzreihen
#bgBlock(fill: colorReihen)[ #bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Potenzreihen] #subHeading(fill: colorReihen)[Potenzreihen]
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
#grid(
columns: (auto, auto),
column-gutter: 5mm,
row-gutter: 1.5mm,
[*Konvergenzradius*], [$|z - z_0| < R : $ absolute Konvergenz],
[], [$|z - z_0| = R : $ Keine Aussage],
[], [$|z - z_0| > R : $ Divergent]
)
#grid(
columns: (1fr, 1fr),
$R = lim_(n->infinity) abs(a_n/(a_(n+1))) = 1/(lim_(n->infinity) root(n, abs(a_n)))$,
$R = limits(liminf)_(n->infinity) abs(a_n/(a_(n+1))) = 1/(limits(limsup)_(n->infinity) root(n, abs(a_n)))$
)
] ]
// Bekannte Reihen
#bgBlock(fill: colorReihen)[ #bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Bekannte Reihen] #subHeading(fill: colorReihen)[Bekannte Reihen]
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$ *Geometrische Reihe:* $sum_(n=0)^infinity q^n$
@@ -317,41 +372,74 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$ *Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
*Binomische Reihe:*
*Reihendarstellungen* *Reihendarstellungen*
#grid( #grid(
columns: (1fr, 1fr), columns: (1fr, 1fr),
gutter: 3mm, gutter: 3mm,
row-gutter: 2mm, row-gutter: 3mm,
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$, $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$, $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
$sin(x) = limits(sum)_(n=0)^infinity $, $sin(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n+1))/((2n + 1)!)$,
$cos(x) = limits(sum)_(n=0)^infinity $ $cos(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n))/((2n)!)$
) )
] ]
#colbreak() // Ableitung
#bgBlock(fill: colorAbleitung)[ #bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Funktionen] #subHeading(fill: colorAbleitung)[Funktionen]
Sei $f : [a,b] -> RR$, stetig auf $x in [a,b]$
- *Zwischenwertsatz* \
$=> forall y in [f(a), f(b)] exists text("min. ein") x in [a,b] : f(x) = y$ \
_Beweiß für mindest. n Nst_
- *Satze von Rolle* \
diffbar $x in (a,b)$\
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
- *Mittelwertsatz* $f(x) = y, f : A -> B$
diffbar $x in (a,b)$ \
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
- *Monotonie* \ *Injectiv (Monomorphismus):* one to one\
$x in I : f'(x) < 0$: Streng monoton steigended \ $f(x) = f(y) <=> x = y quad$
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
(Analog bei (streng ) steigned/fallended) *Surjectiv (Epimorhismis):* Output space coverered \
- $forall x in B : exists x in A : f(x) = y$
*Bijektiv*
injektiv UND Surjectiv $<=>$ Umkehrbar
] ]
// Funktions Sätze
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Funktionen Sätze]
$f(x)$ diff'bar $=> f(x)$ stetig
$f(x)$ stetig diff'bar $=> f(x)$ diff'bar, stetig UND $f'(x)$ stetig
#line(length: 100%, stroke: 0.3mm)
Sei $f : I =[a,b] -> RR$, stetig auf $x in I$
- *Zwischenwertsatz* \
$=> forall y in ["min", "max"] space exists text("min. ein") x in [a,b] : f(x) = y$ \
_Beweiß für mindest. n Nst_
- *Mittelwertsatz der Diff'rechnung* \
diff'bar $x in (a,b)$ \
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
- *Mittelwertsatz der Integralrechnung*\
$g -> RR "integrierbar," g(x)>= 0 forall x in [a,b]$\
$exists xi in [a,b] : integral_a^b f(x)g(x) d x = f(xi) integral_a^b g(x) d x$
- *Satze von Rolle* \
diffbar $x in (a,b)$\
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
- *Hauptsatz der Integralrechung*
Sei $f: [a,b] -> RR$ stetig
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
$=> F'(x) = f(x) forall x in [a,b]$
]
// Stetigkeit
#bgBlock(fill: colorAbleitung)[ #bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Stetigkeit] #subHeading(fill: colorAbleitung)[Stetigkeit]
*Allgemein* *Allgemein*
@@ -393,12 +481,12 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
) )
] ]
// Ableitung
#bgBlock(fill: colorAbleitung)[ #bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Ableitung] #subHeading(fill: colorAbleitung)[Ableitung]
*Differenzierbarkeit* *Differenzierbarkeit*
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \ - $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $) #MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
- $f(x)$ diffbar $=>$ $f(x)$ stetig
- Tangente an $x_0$: $f(x_0) + f'(x_0)(x - x_0)$ - Tangente an $x_0$: $f(x_0) + f'(x_0)(x - x_0)$
- Beste #underline([linear]) Annäherung - Beste #underline([linear]) Annäherung
- Tangente $t(x)$ von $f(x)$ an der Stelle $x_0$: $ lim_(x->0) (f(x) - f(x_0))/(x-x_0) -f'(x_0) =0 $ - Tangente $t(x)$ von $f(x)$ an der Stelle $x_0$: $ lim_(x->0) (f(x) - f(x_0))/(x-x_0) -f'(x_0) =0 $
@@ -428,15 +516,17 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$ - Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
], ],
// Ableitungstabelle
#block([ #block([
#set text(size: 10pt) #set text(size: 7pt)
#table( #table(
align: horizon, align: horizon,
columns: (1fr, 1fr, 1fr), columns: (auto, auto, auto),
table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]), table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]),
row-gutter: 1mm, row-gutter: 1mm,
fill: (x, y) => if x == 0 { color.hsl(180deg, 89.47%, 88.82%) } inset: 1.4mm,
else if x == 1 { color.hsl(180deg, 100%, 93.14%) } else fill: (x, y) => if calc.rem(x, 3) == 0 { color.hsl(180deg, 89.47%, 88.82%) }
else if calc.rem(x, 3) == 1 { color.hsl(180deg, 100%, 93.14%) } else
{ color.hsl(180deg, 81.82%, 95.69%) }, { color.hsl(180deg, 81.82%, 95.69%) },
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$], [$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
[$ln abs(x)$], [$1/x$], [$-1/x^2$], [$ln abs(x)$], [$1/x$], [$-1/x^2$],
@@ -444,6 +534,10 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$], [$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
[$e^x$], [$e^x$], [$e^x$], [$e^x$], [$e^x$], [$e^x$],
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$], [$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
$-cos(x)$, $sin(x)$, $cos(x)$,
$sin(x)$, $cos(x)$, $-sin(x)$,
$-ln abs(cos(x))$, $tan(x)$, $1/(cos(x)^2)$,
$ln abs(sin(x))$, $cot(x)$, $-1/(sin(x)^2)$,
[$x arcsin(x) + sqrt(1 - x^2)$], [$x arcsin(x) + sqrt(1 - x^2)$],
[$arcsin(x)$], [$1/sqrt(1 - x^2)$], [$arcsin(x)$], [$1/sqrt(1 - x^2)$],
@@ -454,38 +548,115 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
[$x arctan(x) - 1/2 ln abs(1 + x^2)$], [$x arctan(x) - 1/2 ln abs(1 + x^2)$],
[$arctan(x)$], [$1/(1 + x^2)$], [$arctan(x)$], [$1/(1 + x^2)$],
[$x op("arccot")(x) + \ 1/2 ln abs(1 + x^2)$], [$x op("arccot")(x) + 1/2 ln abs(1 + x^2)$],
[$op("arccot")(x)$], [$-1/(1 + x^2)$], [$op("arccot")(x)$], [$-1/(1 + x^2)$],
[$x op("arsinH")(x) + \ sqrt(1 + x^2)$], [$x op("arsinH")(x) + sqrt(1 + x^2)$],
[$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$], [$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$],
[$x op("arcosH")(x) + \ sqrt(1 + x^2)$], [$x op("arcosH")(x) + sqrt(1 + x^2)$],
[$op("arcosH")(x)$], [$1/sqrt(x^2-1)$], [$op("arcosH")(x)$], [$1/sqrt(x^2-1)$],
[$x op("artanH")(x) + \ 1/2 ln(1 - x^2)$], [$x op("artanH")(x) + 1/2 ln(1 - x^2)$],
[$op("artanH")(x)$], [$1/(1 - x^2)$], [$op("artanH")(x)$], [$1/(1 - x^2)$],
) )
]) ])
// Extremstellen, Krümmung, Monotonie
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
*Monotonie* $forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) <= f(x_1)$
Hinreichende: $f'(x) >= 0$ \
Konstante Funktion bei $f'(x) = 0$
*Streng Monoton*
$forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) < f(x_1)$ \
Notwendig: $f'(x) >= 0$ (Aber nicht hinreichend)
*Extremstellen Kandiaten*
1. $f'(x) = 0$
2. Definitionslücken
3. Randstellen von $DD$
#grid(columns: (1fr, 1fr),
gutter: 2mm,
[
*Minima*\
$x_0,x in I : f(x_0) < f(x)$ \
$f''(x) > 0 $ \
$f'(x) : - space 0 space +$
],
[
*Maxima*\
$x_0,x in I : f(x_0) > f(x)$ \
$f''(x) < 0$ \
$f'(x) : + space 0 space -$
],
[
*Wendepunkt*\
$f''(x) = 0$ \
$f'(x) : plus.minus space ? space plus.minus$
],
[
*Stattelpunkt/Terrasenpunkt* \
$f'''(x) != 0$
$f''(x) = 0$ UND $f'(x) = 0$ \
$f'(x) : plus.minus space 0 space plus.minus$ \
],
[
*Extremstelle* \
$f'(x) = 0$
]
)
#grid(columns: (1fr, 1fr),
gutter: 2mm,
[
*konkav* $f''(x) <= 0$ \ rechtsgekrümmt \
Sekante liegt unter $f(x)$ \
(eingebäult, von $y= -infinity$ aus)
],
[
*konvex* $f''(x) >= 0$ \ linksgekrümmt \
Sekante liegt über $f(x)$ \
(ausgebaucht, von $y= -infinity$ aus)
]
)
*Strange Konkav/Konvex* \
Notwendig $f''(x) lt.gt 0$
]
// Integral
#bgBlock(fill: colorIntegral, [ #bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral]) #subHeading(fill: colorIntegral, [Integral])
Wenn $f(x)$ stetig und monoton $=>$ integrierbar
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$ Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$ Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Ungleichung:* \
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
*Partial Integration* *Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$ $integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
$integral_a^b u(x) dot v'(x) d x = [u(x)v(x)]_a^b - integral_a^b u'(x) dot v(x)$
*Subsitution* *Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$ $integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$ 1. Ersetzung: $t := g(x)$
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$ 2. Umformen:
$(d y)/(d x) = g'(x)$
3. $x$-kürzen sich weg 3. $x$-kürzen sich weg
]) ])
@@ -506,7 +677,6 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$ $limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.: - Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
*Cauchy-Hauptwert* *Cauchy-Hauptwert*
$integral_(-infinity)^(+infinity) f(x)$ \ $integral_(-infinity)^(+infinity) f(x)$ \
@@ -533,58 +703,58 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent $abs(f(x)) <= g(x) => $ $f(x)$ konvergent
]) ])
] #bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral)[Partial-Bruch-Zerlegung]
Form: $integral "Zähler Polynom"/"Nenner Polynom"$,
$deg("Nenner") < deg("Zähler")$
1. $deg("Zähler") >= deg("Nenner") ->$ *Polynomdivision*
2. *Faktorisieren des Nenners (Nst finden)*, \
Polynomdivision, Raten, Binomische Formel \
Resulat: $N = (x - x_0)^(n_0+)(x - x_1)^(n_1)... (x^2+b x + c)^(m_1)$
3. *Ansatz:* $A$\
$(x-x_0)^n -> A/((x - x_0)^n) + B/((x - x_0)^(n-1)) ... + C/(x - x_0)$\
$(x^2 + b x + c)^n -> (A x + B)/((x^2 + b x + c)^n) ... + (C x + D)/((x^2 + b x + c)^1) $
#bgBlock(fill: colorAllgemein, [ 4. *Durchmul.* $"Ansatz" dot 1/("Fakt. Nenner") = "Zähler"$
5. $A,B,...$ :
Nst einsetzen, dann Koeffizientenvergleich
6. *Intergral wiederzusammen setzen $+c$*
7. Summen teile Integrieren
$delta = 4a - b^2$
#grid(columns: (auto, auto),
row-gutter: 2mm,
column-gutter: 2mm,
$integral 1/(x - x_0)$, $ln abs(x - x_0)$,
$integral 1/((x - x_0)^n)$, $-1/((n-1)(x-x_0)^(n-1))$,
$integral 1/(x^2 + b x + c)$, $2/sqrt(delta) arctan((2x + b)/sqrt(delta))$,
$integral 1/((x^2 + b x + c)^n)$, $(2x + b)/((n-1)(sigma)(x^2+b x +c)^(n-1)) + \
(2(2n-3))/((n-1)(delta)) + (C )
$,
)
])
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table]) #subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable #sinTable
]) ])
#pagebreak() #bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein)[Notwending und Hinreiched]
== Folgen in $CC$ #grid(columns: (1fr, 1fr),
gutter: 2mm,
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$ inset: (left: 2mm, right: 2mm),
$not "not." => not "Satz"$,
Alle folgen regelen gelten $"hin." => "Satz"$,
$"Satz" => forall "not." $,
Complexe Folge kann man in Realteil und Imag zerlegen $not "Satz" => forall not "hin." $,
z.B.
$z_n = z^n z in CC$
$z = abs(z) dot e^(i phi) = abs(z)^n$
== Reihen in $CC$
Fast alles gilt auch.
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
Geometrische Reihe gilt.
Exponential funktion
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
Vorsicht: $(b^a)^n = b^(a dot c)$
Potenzreihen: Eine Fn der form:
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
=== Satz
Konvergenz Radius $R = [0, infinity)$$$
1. $R = 0$ Konvergiet nur bei $z = 0$
2. $R in R : cases(
z in CC &abs(z - z_0) < R &: "abs Konvergent",
z in CC &abs(z - z_0) = R &: "keine Ahnung",
z in CC &abs(z - z_0) > R &: "Divergent"
)$
$ R = limsup_(n -> infinity) $
$"not." arrow.r.double.not "Satz"$,
$not "hin." arrow.r.double.not "Satz"$,
)
])
]

154
src/cheatsheets/CT.typ Normal file
View File

@@ -0,0 +1,154 @@
#import "../lib/styles.typ" : *
#import "../lib/common_rewrite.typ" : *
#import "@preview/cetz:0.4.2"
#set page(
paper: "a4",
margin: (
bottom: 10mm,
top: 5mm,
left: 5mm,
right: 5mm
),
flipped:true,
numbering: "— 1 —",
number-align: center
)
#set text(size: 8pt)
#place(top+center, scope: "parent", float: true, heading(
[Computer Technik/Programmierpraktikum EI]
))
#let Allgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorProgramming = color.hsl(330.19deg, 100%, 68.43%)
#let colorNumberSystems = color.hsl(202.05deg, 92.13%, 75.1%)
// #let colorVR = color.hsl(280deg, 92.13%, 75.1%)
// #let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
// #let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
#let MathAlignLeft(e) = {
align(left, block(e))
}
#columns(2, gutter: 2mm)[
#bgBlock(fill: colorNumberSystems)[
#subHeading(fill: colorNumberSystems)[ASCII Ranges]
#table(
columns: (1fr, 1fr, 1fr),
[Range], [Hex], [Bits],
[Upper Case], raw("0x41-0x5A"), [#raw("010XXXXX") (bit 6)],
[Lower Case], raw("0x61-0x7A"), [#raw("011XXXXX") (bit 6)],
[Numbers (0-9)], raw("0x30-0x39"), [#raw("0011XXXX")],
[Ganz ASCII], raw("0x00-0x7F"), [#raw("0XXXXXXX")],
)
]
#bgBlock(fill: colorNumberSystems)[
#subHeading(fill: colorNumberSystems)[Einer-Kompilment, Zweier-Kompliment, Float (IEEE 754)]
*Float (IEEE 754)*
#cetz.canvas({
import cetz.draw : *
let cell_size = 0.3;
let manntise_stop = 22;
let exponent_start = 23;
let exponent_stop = 30;
let sign_bit = 31;
let total_bits = sign_bit + 1;
for i in range(total_bits) {
let bit = 31 - i;
rect((i*cell_size, 0), (i*cell_size+cell_size, 0.5),
fill: if bit == sign_bit { rgb("#8fff57") } else {
if ( bit >= exponent_start and bit <= exponent_stop) { rgb("#ffe057") } else { if (bit <= manntise_stop) {rgb("#57a5ff")} else { white } }
},
stroke: (thickness: 0.2mm)
)
content((i*cell_size + 0.5*cell_size, 0.25), raw(str(0)))
}
content((cell_size, 0.7), [sign], anchor: "east")
content((5*cell_size, 0.7), [Exponent (#str(exponent_stop - exponent_start + 1) bit)])
content((20*cell_size, 0.7), [Mantisse/Wert (#str(manntise_stop+1) bit)])
rect((0,0), (32*cell_size, 0.5))
content((cell_size*(total_bits - sign_bit), -0.2), anchor: "south", raw(str(sign_bit)), angle: 90deg)
content((cell_size*(total_bits - exponent_stop), -0.2), anchor: "south", raw(str(exponent_stop)), angle: 90deg)
content((cell_size*(total_bits - exponent_start), -0.2), anchor: "south", raw(str(exponent_start)), angle: 90deg)
content((cell_size*(total_bits - manntise_stop), -0.2), anchor: "south", raw(str(manntise_stop)), angle: 90deg)
content((cell_size*(total_bits), -0.2), anchor: "south", raw(str(0)), angle: 90deg)
})
#cetz.canvas({
import cetz.draw : *
let cell_size = 0.21;
let manntise_stop = 51;
let exponent_start = 52;
let exponent_stop = 62;
let sign_bit = 63;
let total_bits = sign_bit + 1;
for i in range(total_bits) {
let bit = sign_bit - i;
rect((i*cell_size, 0), (i*cell_size+cell_size, 0.5),
fill: if bit == sign_bit { rgb("#8fff57") } else {
if ( bit >= exponent_start and bit <= exponent_stop) { rgb("#ffe057") } else { if (bit <= manntise_stop) {rgb("#57a5ff")} else { white } }
},
stroke: (thickness: 0.2mm)
)
content((i*cell_size + 0.5*cell_size, 0.25), raw(str(0)))
}
content((cell_size, 0.7), [sign], anchor: "east")
content((7*cell_size, 0.7), [Exponent (#str(exponent_stop - exponent_start + 1) bit)])
content((20*cell_size, 0.7), [Mantisse/Wert (#str(manntise_stop+1) bit)])
rect((0,0), (total_bits*cell_size, 0.5))
content((cell_size*(total_bits - sign_bit), -0.2), anchor: "south", raw(str(sign_bit)), angle: 90deg)
content((cell_size*(total_bits - exponent_stop), -0.2), anchor: "south", raw(str(exponent_stop)), angle: 90deg)
content((cell_size*(total_bits - exponent_start), -0.2), anchor: "south", raw(str(exponent_start)), angle: 90deg)
content((cell_size*(total_bits - manntise_stop), -0.2), anchor: "south", raw(str(manntise_stop)), angle: 90deg)
content((cell_size*(total_bits), -0.2), anchor: "south", raw(str(0)), angle: 90deg)
})
]
#bgBlock(fill: colorProgramming)[
#subHeading(fill: colorProgramming)[C]
#table(
columns: (auto, 1fr),
fill: white,
raw("restrict", lang: "c"), [
Funktions Argument modifier
Gibt compiler den hint, das eine Pointer nur in der Funktion verwedent wird. Kann besser optimiert werden
],
raw("volatile", lang: "c"), [
Zwingt Compiler den Funktion/Variable nicht wegzuoptimieren
]
)
]
]

View File

@@ -1,5 +1,10 @@
#import "../lib/common_rewrite.typ" : *
#import "@preview/mannot:0.3.1" #import "@preview/mannot:0.3.1"
#import "@preview/cetz:0.4.2"
#import "@preview/zap:0.5.0"
#import "../lib/common_rewrite.typ" : *
#import "../lib/truthtable.typ" : *
#import "../lib/fetModel.typ" : *
#show math.integral: it => math.limits(math.integral) #show math.integral: it => math.limits(math.integral)
#show math.sum: it => math.limits(math.sum) #show math.sum: it => math.limits(math.sum)
@@ -19,11 +24,15 @@
columns: (1fr, 1fr, 1fr), columns: (1fr, 1fr, 1fr),
[#align(left, datetime.today().display("[day].[month].[year]"))], [#align(left, datetime.today().display("[day].[month].[year]"))],
[#align(center, counter(page).display("- 1 -"))], [#align(center, counter(page).display("- 1 -"))],
[Thanks to Daniel for the circuit Symbols],
[#align(right, image("../images/cc0.png", height: 5mm,))] [#align(right, image("../images/cc0.png", height: 5mm,))]
) )
], ],
) )
#let pTypeFill = rgb("#dd5959").lighten(10%);
#let nTypeFill = rgb("#5997dd").lighten(10%);
#place(top+center, scope: "parent", float: true, heading( #place(top+center, scope: "parent", float: true, heading(
[Digitaltechnik] [Digitaltechnik]
)) ))
@@ -172,29 +181,396 @@
*KDNF:* Kanonische DNF\ *KDNF:* Kanonische DNF\
*KKNF:* Kanonische KNF *KKNF:* Kanonische KNF
*DMF:* Disjunktive #underline("Minimal")-Form: \
$ --> LNot(x_0)x_1 + LNot(x_1)$\
*KMF:* Konjunktive #underline("Minimal")-Form: \
$ --> (LNot(x_0) + x_1) dot LNot(x_1)$
$f(underline(x)) -->$ *KKNF* / *KDNF* mit Boolsche Expansion $f(underline(x)) -->$ *KKNF* / *KDNF* mit Boolsche Expansion
] ]
// Dotierung
#bgBlock(fill: colorRealsierung)[
#table(
columns: (auto, 1fr),
[N-Type],
[
- Dotierung: Phosphor (V)
- Negative Ladgunsträger ($e^-$)
- mehr Elektron als Si
],
[P-Type],
[
- Dotierung: Bor (III)
- Postive Landsträger (Löcher)
- mehr Löcher als Si
]
)
#zap.circuit({
import cetz.draw : *
import zap : *
diode("A", (0,1.7), (3,1.7), fill: black, i: (content: $i_d$, anchor: "south"))
rect((0,0),(1,1), fill: pTypeFill, stroke: none)
rect((2,0),(3,1), fill: nTypeFill, stroke: none)
rect((1,0), (1.5,1), fill: color.lighten(pTypeFill, 50%), stroke: none)
rect((1.5,0), (2,1), fill: color.lighten(nTypeFill, 50%), stroke: none)
line((2, 0), (2, 1), stroke: (dash: "dotted"))
line((1, 0), (1, 1), stroke: (dash: "dotted"))
line((1.5, 0), (1.5, 1), stroke: (dash: "densely-dotted"))
cetz.decorations.brace((2,-0.1),(1,-0.1))
content((1.5, -0.6), "RLZ")
content((2.5, 0.5), "N")
content((0.5, 0.5), "P")
content((1.25, 0.5), "-")
content((1.75, 0.5), "+")
})
#grid(
columns: (1fr, 1fr),
column-gutter: 6mm,
align: center,
[#align(center)[*NMOS*]], [#align(center)[*PMOS*]],
grid.cell(inset: 2mm,
align(center,
zap.circuit({
import "../lib/circuit.typ" : *
registerAllCustom();
fet("T", (0,0), type: "N", scale: 150%);
})
)
),
grid.cell(inset: 2mm,
align(center,
zap.circuit({
import "../lib/circuit.typ" : *
registerAllCustom();
fet("T", (0,0), type: "P", scale: 150%);
}),
)
),
scale(
x: 75%, y: 75%,
zap.circuit({
import cetz.draw : *
import zap : *
rect((1.5,0),(4-1.5, 0.1), fill: rgb("#535353"), stroke: none)
rect((0,0),(4,-1), fill: pTypeFill, stroke: none)
rect((0.5,-0),(1.5, -0.5), fill: nTypeFill, stroke: none)
rect((4 - 1.5,-0),(4-0.5, -0.5), fill: nTypeFill, stroke: none)
rect((1.5,-0),(2.5, -0.5), fill: none, stroke: (paint: black, dash: "dotted", thickness: 0.06))
line((3, 0.3), (3, 0))
line((1, 0.3), (1, 0))
line((2, 0.3), (2, 0.1))
cetz.decorations.brace((2.5,-0.6),(1.5,-0.6))
content((2, -1.3), "Channel")
content((3, -0.25), $"n"^+$)
content((1, -0.25), $"n"^+$)
content((0.5, -0.75), "p")
content((3, 0.5), "S")
content((1, 0.5), "D")
content((2, 0.5), "G")
})
),
scale(
x: 75%, y: 75%,
zap.circuit({
import cetz.draw : *
import zap : *
rect((1.5,0),(4-1.5, 0.1), fill: rgb("#535353"), stroke: none)
rect((0,0),(4,-1), fill: nTypeFill, stroke: none)
rect((0.5,-0),(1.5, -0.5), fill: pTypeFill, stroke: none)
rect((4 - 1.5,-0),(4-0.5, -0.5), fill: pTypeFill, stroke: none)
rect((1.5,-0),(2.5, -0.5), fill: none, stroke: (paint: black, dash: "dotted", thickness: 0.06))
line((3, 0.3), (3, 0))
line((1, 0.3), (1, 0))
line((2, 0.3), (2, 0.1))
cetz.decorations.brace((2.5,-0.6),(1.5,-0.6))
content((2, -1.3), "Channel")
content((3, -0.25), $"p"^+$)
content((1, -0.25), $"p"^+$)
content((0.5, -0.75), "n")
content((3, 0.5), "S")
content((1, 0.5), "D")
content((2, 0.5), "G")
})
),
)
*Drain Strom:*
NMOS: $I_"Dn" = cases(
gap: #0.6em,
0 & 0 < U_"GS" < U_t,
beta_n (U_"GS" - U_t - U_"DS" / 2) U_"DS" quad & cases(delim: #none, U_"GS" >= U_t, 0 < U_"DS" < U_"GS" - U_t),
beta_n/2 (U_"GS" - U_"th")^2 & cases(delim: #none, U_"GS" >= U_t, U_"DS" > U_"GS" - U_t)
)$
PMOS: $I_"Dp" = cases(
gap: #0.6em,
0 & 0 > U_"GS" > U_t,
beta_p (U_"GS" - U_t - U_"DS" / 2) U_"DS" quad & cases(delim: #none, U_"GS" <= U_t, 0 > U_"DS" > U_"GS" - U_t),
beta_p/2 (U_"GS" - U_"th")^2 & cases(delim: #none, U_"GS" <= U_t, U_"DS" < U_"GS" - U_t)
)
$
]
// Quine McCluskey
#bgBlock(fill: colorOptimierung)[ #bgBlock(fill: colorOptimierung)[
#subHeading(fill: colorOptimierung)[Quine McCluskey] #subHeading(fill: colorOptimierung)[Quine McCluskey]
] ]
#bgBlock(fill: colorRealsierung)[ // NMOS/PMOS
#subHeading(fill: colorRealsierung)[NMOS/PMOS]
]
#bgBlock(fill: colorRealsierung)[ #bgBlock(fill: colorRealsierung)[
#subHeading(fill: colorRealsierung)[CMOS] #subHeading(fill: colorRealsierung)[CMOS]
$hat(=)$ Complemntary MOS
#table(
columns: (1fr, 1fr),
zap.circuit({
import zap : *
import cetz.draw : content
import "../lib/circuit.typ" : *
set-style(wire: (stroke: (thickness: 0.025)))
registerAllCustom();
fet("N0", (0,0), type: "N", angle: 90deg);
fet("P0", (0,1), type: "P", angle: 90deg);
wire("N0.G", (rel: (-0.1, 0)), (horizontal: (), vertical: "P0.G"), "P0.G")
node("outNode", (0,0.5))
node("inNode", (-0.6,0.5))
wire((-1, 0.5), "inNode")
wire((0.2, 0.5), "outNode")
node("N2", (0,-0.5))
node("N2", (0,1.5))
wire((-1, -0.5), (0.5, -0.5))
wire((-1, 1.5), (0.5, 1.5))
content((-1, 0.5), scale($"X"$, 60%), anchor: "east")
content((0.45, 0.5), scale($overline("X")$, 60%), anchor: "east")
content((-0.9, 1.5), scale($"U"_"DD"$, 60%), anchor: "east")
content((-0.9, -0.5), scale($"GND"$, 60%), anchor: "east")
}),
[
*Inverter*
$overline(X)$
],
zap.circuit({
import zap : *
import cetz.draw : content
import "../lib/circuit.typ" : *
set-style(wire: (stroke: (thickness: 0.025)))
registerAllCustom();
fet("P0", (0.5,0.25), type: "P", angle: 90deg);
fet("P1", (0.5,1.25), type: "P", angle: 90deg);
fet("N0", (0,-1), type: "N", angle: 90deg);
fet("N1", (1,-1), type: "N", angle: 90deg);
content((-0.7, 1.75), scale($"V"_"DD"$, 60%), anchor: "east")
content((-0.7, -1.5), scale($"GND"$, 60%), anchor: "east")
content("N0.G", scale($"B"$, 60%), anchor: "east")
content("P0.G", scale($"B"$, 60%), anchor: "east")
content("N1.G", scale($"A"$, 60%), anchor: "east")
content("P1.G", scale($"A"$, 60%), anchor: "east")
wire((-0.75, -1.5), (1.5, -1.5))
wire((-0.75, 1.75), (1.5, 1.75))
wire("N0.S", "N1.S")
node("N2", "P0.D")
wire("N2", (horizontal: (), vertical: "N0.S"))
node("N3", "N0.D")
node("N4", "N1.D")
node("N5", "P1.S")
node("N6", (horizontal: (), vertical: "N0.S"))
wire("N2", (horizontal: (rel: (0.5, 0)), vertical: "N2"))
content((horizontal: (rel: (0.65, 0)), vertical: "N2"), scale($"Y"$, 60%))
}),
[
*NOR*
$overline(A +B) = Y$
],
zap.circuit({
import zap : *
import cetz.draw : content
import "../lib/circuit.typ" : *
set-style(wire: (stroke: (thickness: 0.025)))
registerAllCustom();
content((-0.7, 0.5), scale($"V"_"DD"$, 60%), anchor: "east")
content((-0.7, -2.75), scale($"GND"$, 60%), anchor: "east")
fet("P0", (0, 0), type: "P", angle: 90deg);
fet("P1", (1, 0), type: "P", angle: 90deg);
fet("N0", (0.5,-1.25), type: "N", angle: 90deg);
fet("N1", (0.5,-2.25), type: "N", angle: 90deg);
wire((-0.75, 0.5), (1.5, 0.5))
wire((-0.75, -2.75), (1.5, -2.75))
wire("P0.D", "P1.D")
node("N2", (horizontal: "N1.D", vertical: "P0.D"))
node("N3", "N0.S")
wire("N2", "N3")
wire("N3", (rel: (0.5, 0)))
content((horizontal: (rel: (0.65, 0)), vertical: "N3"), scale($"Z"$, 60%))
node("4", "P0.S")
node("4", "P1.S")
node("4", "N1.D")
content("N0.G", scale($"B"$, 60%), anchor: "east")
content("P0.G", scale($"B"$, 60%), anchor: "east")
content("N1.G", scale($"A"$, 60%), anchor: "east")
content("P1.G", scale($"A"$, 60%), anchor: "east")
}),
[
*NAND*
$overline(A dot B) = Z$
],
)
]
// CMOS
#bgBlock(fill: colorRealsierung)[
#subHeading(fill: colorRealsierung)[CMOS Verzögerung]
*Inverter*\
$t_("p"/"nLH") ~ (C_"L" t_"ox" L_"p/n")/(W_"p/n" mu_"p/n" epsilon(V_"DD" - abs(V_"Tpn"))) $
#grid(
columns: (1fr, 1fr),
[
*Steigend mit*
- Last $C_L$
- Oxyddicke $T_"ox"$
- Kandlalänge $L_"p/n"$
- Schwellspannung $V_"Tp/n"$
],
[
*Sinkend mit*
- Kanalweite
- Landsträger Veweglichkeit $mu_"p/n"$
],
)
$t_p ~ C_L/(beta(V_"DD" - abs(V_"T")))$
$t_p ~ C_L/(W(V_"DD" - abs(V_"T")))$
]
#bgBlock(fill: colorState)[
#subHeading(fill: colorState)[Latches, Flipflops und Register]
] ]
#bgBlock(fill: colorState)[ #bgBlock(fill: colorState)[
#subHeading(fill: colorState)[Timing] #subHeading(fill: colorState)[Timing]
*Register Bedinungen*
#cetz.canvas(length: 0.5mm, {
import cetz.draw: *
let cycle_time = 38
let cycle_start = cycle_time*0.8
let cycle_end = cycle_time*4
let signal_hight = 10
let switch_offset = cycle_time/13
let signal_storke = (paint: rgb("#2e2e2e"), thickness: 0.3mm)
let t_c2q = 0.6
let t_setup = 0.6
let t_hold = 0.4
// clk1
line((1*cycle_time + switch_offset/2, signal_hight + 1), (1*cycle_time + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
// q change
line((cycle_time*(t_c2q + 1) + switch_offset/2, -15 + signal_hight + 1), (cycle_time*(t_c2q + 1) + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
// d change
line((cycle_time*(t_setup + 2) + switch_offset/2, -30 + signal_hight + 1), (cycle_time*(t_setup + 2) + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
// clk
line((cycle_time*3 + switch_offset/2, signal_hight + 1), (cycle_time*3 + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
// hold time
line((cycle_time*(3+t_hold) + switch_offset/2, -30 + signal_hight + 1), (cycle_time*(3+t_hold) + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
content(( cycle_start -7, 5), "clk")
line((cycle_start,0), (cycle_time,0), (cycle_time + switch_offset,signal_hight), (cycle_time*2, signal_hight), (cycle_time*2 + switch_offset, 0), (cycle_time*3, 0), (cycle_time*3 + switch_offset, 10), (cycle_end, signal_hight), stroke: signal_storke)
translate((0, -15))
content((cycle_start -7, 5), "Q")
line(
(cycle_start,0), (cycle_time*(t_c2q + 1), 0),
(cycle_time*(t_c2q + 1) + switch_offset, signal_hight),
(cycle_time*(t_c2q + 3),signal_hight), (cycle_time*(t_c2q + 3) + switch_offset, 0),
(cycle_end + switch_offset, 0),
stroke: signal_storke
)
line(
(cycle_start,signal_hight), (cycle_time*(t_c2q + 1), signal_hight),
(cycle_time*(t_c2q + 1) + switch_offset, 0),
(cycle_time*(t_c2q + 3),0), (cycle_time*(t_c2q + 3) + switch_offset, signal_hight),
(cycle_end + switch_offset, signal_hight),
stroke: signal_storke
)
translate((0, -15))
content((cycle_start -7, 5), "D")
line(
(cycle_start,0), (cycle_time*(t_setup + 2), 0),
(cycle_time*(t_setup + 2) + switch_offset, signal_hight), (cycle_end + switch_offset, signal_hight), stroke: signal_storke
)
line(
(cycle_start,signal_hight), (cycle_time*(t_setup + 2), signal_hight),
(cycle_time*(t_setup + 2) + switch_offset, 0), (cycle_end + switch_offset, 0), stroke: signal_storke
)
})
] ]
#bgBlock(fill: colorState)[
#subHeading(fill: colorState)[Latches und Register]
]
#bgBlock(fill: colorState)[ #bgBlock(fill: colorState)[
#subHeading(fill: colorState)[Pipeline/Parallele Verarbeitungseinheiten] #subHeading(fill: colorState)[Pipeline/Parallele Verarbeitungseinheiten]
@@ -203,4 +579,47 @@
#bgBlock(fill: colorState)[ #bgBlock(fill: colorState)[
#subHeading(fill: colorState)[Zustandsautomaten] #subHeading(fill: colorState)[Zustandsautomaten]
] ]
#colbreak()
#bgBlock(fill: colorRealsierung)[
#subHeading(fill: colorRealsierung)[Verlustleistung/Verzögerung]
$t_p ~ C_L / (V_"DD" - V_"Tn")$
$P_"stat" ~ e^(-V_T)$
$P_"dyn"~ V_"DD"^2$
*Dynamisch:* Bei Schlaten \
- Quer/Kurzschluss Strom $i_q$ \
$P_"short" = a_01 f beta_n tau (V_"DD" - 2 V_"Tn")^3$ \
$tau$: Kurzschluss/Schaltzeit
- Lade Strome des $C_L$ $i_c$
$P_"cap" = alpha_01 f C_L V_"DD"^2$
*Statisch:* Konstant
- Leckstom (weil Diode)
- Gatestrom
*Schaltrate*
$alpha_"clk" = 100%$
$alpha_"logic" = 50%$
]
] ]
#place(bottom,
truth-table(
outputs: (
("NAND", (1, 1, 1, 0)),
("NOR", (1, 0, 0, 0)),
("XNOR", (1, 0, 0, 1)),
("XOR", (0, 1, 1, 0)),
("AND", (0, 0, 0, 1)),
("OR", (0, 1, 1, 1)),
),
inputs: ("A", "B")
),
float: true
)

View File

@@ -1,7 +1,11 @@
#import "@preview/biceps:0.0.1" : * #import "@preview/biceps:0.0.1" : *
#import "@preview/mannot:0.3.1" #import "@preview/mannot:0.3.1"
#import "@preview/fletcher:0.5.8"
#import "@preview/cetz:0.4.2"
#import "../lib/styles.typ" : * #import "../lib/styles.typ" : *
#import "../lib/common_rewrite.typ" : * #import "../lib/common_rewrite.typ" : *
#import "../lib/mathExpressions.typ" : *
#set page( #set page(
paper: "a4", paper: "a4",
@@ -16,13 +20,16 @@
number-align: center number-align: center
) )
#set text(size: 8pt)
#place(top+center, scope: "parent", float: true, heading( #place(top+center, scope: "parent", float: true, heading(
[Linear Algebra EI] [Linear Algebra EI]
)) ))
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%) #let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorFolgen = color.hsl(202.05deg, 92.13%, 75.1%) #let colorMatrixVerfahren = color.hsl(330.19deg, 100%, 68.43%)
#let colorReihen = color.hsl(280deg, 92.13%, 75.1%) #let colorMatrix = color.hsl(202.05deg, 92.13%, 75.1%)
#let colorVR = color.hsl(280deg, 92.13%, 75.1%)
#let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%) #let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
#let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%) #let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
@@ -33,9 +40,11 @@
} }
#columns(4, gutter: 2mm)[ #columns(4, gutter: 2mm)[
#bgBlock(fill: colorAllgemein)[ #bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Notation] #subHeading(fill: colorAllgemein)[Komplexe Zahlen]
#ComplexNumbersSection()
#sinTable
] ]
#bgBlock(fill: colorGruppen)[ #bgBlock(fill: colorGruppen)[
@@ -73,8 +82,6 @@
- $(R, dot)$ Halbgruppe - $(R, dot)$ Halbgruppe
- $(a + b) dot c = (a dot c) + (a dot b) space$ (Distributiv Gesetz) - $(a + b) dot c = (a dot c) + (a dot b) space$ (Distributiv Gesetz)
#colbreak()
*Körper:* Menge $K$ mit: *Körper:* Menge $K$ mit:
- $(K, +), (K without {0} , dot)$ kommutativ Gruppe \ - $(K, +), (K without {0} , dot)$ kommutativ Gruppe \
($0$ ist Neutrales Element von $+$) ($0$ ist Neutrales Element von $+$)
@@ -82,8 +89,8 @@
_Beweiß durch Überprüfung der Eigneschaften_ _Beweiß durch Überprüfung der Eigneschaften_
] ]
#bgBlock(fill: colorReihen)[ #bgBlock(fill: colorVR)[
#subHeading(fill: colorReihen)[Vektorräume (VR)] #subHeading(fill: colorVR)[Vektorräume (VR)]
$(V, plus.o, dot.o)$ ist ein über Körper $K$ $(V, plus.o, dot.o)$ ist ein über Körper $K$
- $+: V times V -> V, (v,w) -> v + w$ - $+: V times V -> V, (v,w) -> v + w$
- $dot: K times V -> V, (lambda,v) -> lambda v$ - $dot: K times V -> V, (lambda,v) -> lambda v$
@@ -100,8 +107,8 @@
- $(U inter W) subset V$ - $(U inter W) subset V$
] ]
#bgBlock(fill: colorReihen)[ #bgBlock(fill: colorVR)[
#subHeading(fill: colorReihen)[Basis und Dim] #subHeading(fill: colorVR)[Basis und Dim]
*Linear Abbildung:* $Phi: V -> V$ *Linear Abbildung:* $Phi: V -> V$
- $Phi(0) = 0$ - $Phi(0) = 0$
- $Phi(lambda v + w) = lambda Phi(v) + Phi(w)$ - $Phi(lambda v + w) = lambda Phi(v) + Phi(w)$
@@ -152,6 +159,7 @@
*Vektorraum-Homomorphismus:* linear Abbildung zwischen VR *Vektorraum-Homomorphismus:* linear Abbildung zwischen VR
] ]
// Spann und Bild, Kern
#bgBlock(fill: colorAbbildungen)[ #bgBlock(fill: colorAbbildungen)[
#subHeading(fill: colorAbbildungen)[Spann und Bild] #subHeading(fill: colorAbbildungen)[Spann und Bild]
*Spann:* *Spann:*
@@ -171,7 +179,252 @@
*Rang* *Rang*
$op("Rang") f := dim op("Bild") f$ $op("Rang") f := dim op("Bild") f$
*Dimensionssatz:* Sei $A$ lineare Abbildung \
$dim(V) = dim(kern(A)) + dim(Bild(A))$ \
$dim(V) = dim(kern(A)) + Rang(A)$ \
$dim(V) = dim(Bild(A)) "oder" dim(kern(A)) = 0 \ <=> A "bijektiv" <=> "invertierbar"$
] ]
#bgBlock(fill: colorAbbildungen)[
#subHeading(fill: colorAbbildungen)[Determinate und Bilinearform]
]
#bgBlock(fill: colorVR)[
#subHeading(fill: colorVR)[Eukldische Vektorräume]
]
#bgBlock(fill: colorVR)[
#subHeading(fill: colorVR)[Unitair Vektorräume ]
]
// Matrix Typem
#bgBlock(fill: colorMatrix)[
#let colred(x) = text(fill: red, $#x$)
#let colblue(x) = text(fill: blue, $#x$)
#subHeading(fill: colorMatrix)[Matrix Typen]
#align(center, scale($colred(m "Zeilen") colblue(n "Splate")\ A in KK^(colred(m) times colblue(n))$, 120%)) #grid(columns: (1fr, 1fr),
$quad mat(
a_11, a_12, ..., a_(1n);
a_21, a_22, ..., a_(2n);
dots.v, dots.v, dots.down, dots.v;
a_(m 1), a_(m 2), ..., a_(m n)
)
$,
cetz.canvas({
import cetz.draw : *
rect((0, 0), (1, 1), fill: rgb("#9292926b"))
set-style(mark: (end: (symbol: "straight")))
line((0, -0.2), (1, -0.2), stroke: (paint: blue, thickness: 0.3mm))
line((-0.2, 1), (-0.2, 0), stroke: (paint: red, thickness: 0.3mm))
content((-0.45, 0.5), $colred(bold(m))$)
content((0.5, -0.35), $colblue(bold(n))$)
content((0.5, 0.5), $A$)
})
)
#table(
columns: (auto, 1fr),
inset: 2mm,
fill: (x, y) => if (calc.rem(y, 2) == 0) { tableFillLow } else { tableFillHigh },
[*Einheits Matrix*\ $I,E$], [],
[*Diagonalmatrix* \ $Sigma,D$], [
Nur Einträger auf Hauptdiagonalen \
$det(D) = d_00 dot d_11 dot d_22 dot ...$
],
[*Symetrisch*\ $S$], [
$S = S^T$, $S in KK^(n times n)$\
$A A^T$, $A^T A$ ist symetrisch \
$S$ immer diagonaliserbar \
EW immer $in RR$, EV orthogonal
],
[*Invertierbar*], [
$exists A^(-1) : A A^(-1) = A^(-1) A = E$ \
*Invertierbar wenn:* \
$A$ bijektiv, $det(A) = 0$ \
$"Spalten Vekoren lin. unabhänig"$ \
$det(A) = 0$ \
*Nicht Invertierbar wenn:*\
$exists$ EW $!= 0 => not "invertierbar"$
Keine Qudratische Matrix
],
[*Orthogonal*\ $O$], [
$O^T = O^(-1)$ \
$ip(O v, O w) = ip(v, w)$
],
[*Unitair*], [
$V^* )$
],
[*Diagonaliserbar*], [
$exists A = B D B^(-1)$, $D$ diagonal,
$B$: Splaten sind EV von $A$
- Selbst-Adujunkte diagonalisierbar
- Symetrisch Matrix
- $A in KK^(n times n) "AND" alg(lambda) = geo(lambda)$
],
[*postiv-semi-definit*], [
$forall$ EW $>= 0$
],
)
]
#bgBlock(fill: colorMatrixVerfahren)[
#subHeading(fill: colorMatrixVerfahren)[Eigenwert und Eigenvektoren ]
$A in CC^(n times n):$ $n$ Complexe Eigenwerte \
$A in RR^(n times n)$
*1. Eigentwete bestimmen*
$A v = lambda v => det(A-E lambda) = 0$
$0 = det mat(#mannot.markhl($x_11 - lambda_1$, color: red), x_12, ..., x_(1n);
x_21, #mannot.markhl($x_22 - lambda_2$, color: red), ..., x_(2n);
dots.v, dots.v, dots.down, dots.v;
x_(n 1), x_(n 2), ..., #mannot.markhl($x_(n n) -lambda_n$, color: red)
)$
$--> chi_A = (lambda_0 - lambda)^(n_0) dot (lambda_1 - lambda)^(n_1) ... $
$lambda_0, lambda_1, ... = $ Nst von $chi_A$
*2. Eigenvektor bestimmen*
$Eig(lambda_k) = kern(A - lambda_k E)$
$mat(#mannot.markhl($x_11 - lambda_k$, color: red), x_12, ..., x_(1n);
x_21, #mannot.markhl($x_22 - lambda_k$, color: red), ..., x_(2n);
dots.v, dots.v, dots.down, dots.v;
x_(n 1), x_(n 2), ..., #mannot.markhl($x_(n n) -lambda_k$, color: red)
) vec(v_1, v_2, dots.v, v_n) = vec(0, 0, dots.v, 0)$
*Algebrasche Vielfacheit:* $alg(lambda) = n_0 + n_1 + ...$ \
*Geometrische Vielfacheit:* $geo(lambda) = dim("Eig"_A (lambda))$ \
$1 <= geo(lambda) <= alg(lambda)$
]
#bgBlock(fill: colorMatrixVerfahren)[
#subHeading(fill: colorMatrixVerfahren)[Gram-Schmit ONB]
]
#bgBlock(fill: colorMatrixVerfahren)[
#subHeading(fill: colorMatrixVerfahren)[Diagonalisierung]
$A = R D R^(-1)$
*Rezept Diagonalisierung*
1. EW bestimmen: $det(A - lambda I) = 0$ \
$=> chi_A = (lambda_1 - lambda)^(m 1) (lambda_2 - lambda)^(m 2) ...$
2. EV bestimmen: $spann(kern(A - lambda_i I))$: $r_0, r_1, ...$
3. \
#grid(columns: (1fr, 1fr),
[
Diagnoalmatrix: $D$
$mat(
lambda_1, 0, 0,...;
0, lambda_1, 0, ...;
0, 0, lambda_2, ...;
dots.v, dots.v, dots.v, dots.down
)
$
],
[
Basiswechselmatrix: $R$
$mat(
|, | , ..., |;
r_0, r_1, ..., r_n;
|, |, ..., |
)$
]
)
]
#bgBlock(fill: colorMatrixVerfahren)[
#subHeading(fill: colorMatrixVerfahren)[Schur-Zerlegung]
immer anwendbar;
]
#bgBlock(fill: colorMatrixVerfahren)[
#subHeading(fill: colorMatrixVerfahren)[SVD]
$A in RR^(m times n)$ zerlegbar in $A = L S R^T$ \
$L in RR^(m times m)$ Orthogonal \
$S in RR^(m times n)$ Diagonal \
$R in RR^(n times n)$ Orthogonal
1. $A A^T$ berechnen $A A^T in RR^(m times m)$
2. $A A^T$ diagonalisieren in $R$, $D$
3. Singulärwere berechen: $sigma_i = sqrt(lambda_i) $
4. $l_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; l_0, l_1, ..., l_m; |, |, ..., |)$ \
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
5. $S in RR^(n times m)$ (wie $A$): \
$S = mat(sigma_0, 0; 0, sigma_1; dots.v, dots.v; 0, 0) quad quad quad S = mat(sigma_0, 0, dots, 0; 0, sigma_1, ..., 0)$
]
#bgBlock(fill: colorMatrix)[
#subHeading(fill: colorMatrix)[Matrix Normen]
$|| dot ||_M$ Matrix Norm, $|| dot ||_V$ Vektornorm
Generisch Vektor Norm: $|| v ||_p = root(p, sum_(k=1)^n (x_k)^p)$
- submultiplikativ: $||A B||_"M" <= ||A||||B||$
- verträglich mit einer Vektornorm: $||A v||_"V" <= ||A||_"M" ||v||_"V"$
*Frobenius-Norm* $||A||_"M" = sqrt(sum_(i=1)^m sum_(j=1)^n a_(m n)^2)$
*Induzierte Norm* $||A||_"M" = sup_(v in V without {0}) (||A v||_V)/(||v||_V)$\
$ = sup_(||v|| = 1) (||A v||_V)/(||v||_V)$
- submultiplikativ
- verträglich mit einer Vektornorm $||dot||_V$
*maximale Spaltensumme* $||A||_r = max_(1<= i <= n) sum_(j=1)^n |a_(j)|$
]
#bgBlock(fill: colorMatrix)[
#subHeading(fill: colorMatrix)[Rekursive Folgen]
E.g: $a_1 x_(n-1) + a_2 x_(n) = x_(n+1)$
1. Als Matrix Schreiben $F: vec(x_(n-1), x_(n)) = vec(x_n, x_(n+1))$ \
$F s_(n-1) = s_(n)$
2. Diagonaliseren: $F = R D R^(-1) $ \
3. Wiederholte Anwendung: $F^n = R D^n R^(-1)$
]
#bgBlock(fill: colorMatrix)[
#subHeading(fill: colorMatrix)[Differenzialgleichungen]
]
] ]

File diff suppressed because it is too large Load Diff

156
src/lib/circuit.typ Normal file
View File

@@ -0,0 +1,156 @@
#import "@preview/cetz:0.4.2" as cetz
#import "@preview/zap:0.5.0" as zap
#import zap: interface
#let registerAllCustom() = {
cetz.draw.set-ctx(ctx => {
ctx.zap.style.insert("zweiTor", (
scale: auto,
fill: none,
height: 10mm,
width: 10mm,
))
ctx.zap.style.insert("einTor", (
scale: auto,
fill: none,
height: 3mm,
width: 6mm,
))
ctx.zap.style.insert("fet", (
scale: auto,
fill: none,
height: 5mm,
width: 10mm,
))
for it in ("lnot", "land", "lnand", "lor", "lnor", "lxor", "lxnor") {
ctx.zap.style.insert(it, (
width: 0.7,
min-height: 0.9,
spacing: 0.4,
padding: 0.25,
fill: white,
stroke: auto,
)
)
}
ctx
})
}
#let einTor(name, node, flip: false, ..params) = {
import cetz.draw: rect
import zap: component
// Drawing function
let draw(ctx, position, style) = {
rect(
(-style.width/2, -style.height/2),
(style.width/2, style.height/2),
fill: style.fill
)
if(flip) {
rect(
((style.width*0.7)/2, -(style.height)/2),
(style.width/2, style.height/2),
fill: black
)
} else {
rect(
(-(style.width)/2, -style.height/2),
(-(style.width*0.6)/2, style.height/2),
fill: black
)
}
interface((-style.width / 2, -style.height / 2), (style.width / 2, style.height / 2), io: position.len() < 2)
}
// Component call
component("einTor", name, node, draw: draw, ..params)
}
#let zweiTor(name, node, label, ..params) = {
import cetz.draw: rect, anchor, content
import zap: component
// Drawing function
let draw(ctx, position, style) = {
rect(
(-style.width/2, -style.height/2),
(style.width/2, style.height/2),
fill: style.fill
)
content((0,0), label)
anchor("in0", (-style.width/2, -style.height*0.5/2))
anchor("in1", (-style.width/2, style.height*0.5/2))
anchor("out0", (style.width/2, -style.height*0.5/2))
anchor("out1", (style.width/2, style.height*0.5/2))
interface((-style.width / 2, -style.height / 2), (style.width / 2, style.height / 2), io: false)
}
// Component call
component("zweiTor", name, node, draw: draw, ..params)
}
#let fet(name, node, type: "N", scale: 1, angle: 0, thickness: 0.5pt, ..params) = {
import cetz.draw: line, circle, anchor, rotate
import zap: component
// Drawing function
let draw(ctx, position, style) = {
let zap-style = ctx.zap.style
let height = style.height * scale;
let width = style.width * scale;
let wireThink = ctx.zap.style.wire.stroke.thickness;
rotate(angle);
if(type == "N") {
line((0, height), (0, height*(1-0.45)), stroke: (thickness: wireThink))
} else {
line((0, height), (0, height*(1-0.2)), stroke: (thickness: wireThink))
circle((0, height*(1-0.3) - thickness/2), radius: (height/2)*0.2, stroke: (thickness: wireThink))
}
line(
(width/2, 0),
(width*0.4/2, 0),
(width*0.4/2, 0),
(width*0.4/2, height*(1-0.6)),
(-width*0.4/2, height*(1-0.6)),
(-width*0.4/2, 0),
(-width/2, 0), stroke: (thickness: wireThink)
)
line(
(width*0.42/2, height*(1-0.45)),
(-width*0.42/2, height*(1-0.45)),
stroke: (thickness: wireThink)
)
anchor("G", (0, height))
anchor("D", (-width/2, 0))
anchor("S", (width/2, 0))
interface((-width / 2, -height / 2), (width / 2, height / 2), io: true)
}
// Component call
component("fet", name, node, draw: draw, ..params)
}

View File

@@ -1,4 +1,4 @@
#let bgBlock(body, fill: color) = block(body, fill:fill.lighten(80%), width: 100%, inset: (bottom: 2mm)) #let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm, left: 2mm, right: 2mm,))
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm)) #let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
#let MathAlignLeft(e) = { #let MathAlignLeft(e) = {
@@ -6,40 +6,68 @@
} }
#let subHeading(body, fill: color) = { #let subHeading(body, fill: color) = {
box( move(dx: -2mm, dy: 0mm, box(
align( align(
top+center, top+center,
text( text(
body, body,
size: 10pt, size: 8pt,
weight: "regular", weight: "bold",
style: "italic", style: "italic",
) )
), ),
fill: fill, fill: fill,
width: 100%, width: 100% + 4mm,
inset: 1mm, inset: 1mm,
height: auto height: auto
) ))
} }
#let MathAlignLeft(e) = { #let MathAlignLeft(e) = {
align(left, block(e)) align(left, block(e))
} }
#let tableFillHigh = white
#let tableFillLow = color.lighten(gray, 50%)
#let sinTable = [ #let sinTable = [
#let data = json("../sintable.json") #let data = json("../sintable.json")
#table( #table(
columns: data.at("x").len() + 1, columns: data.len(),
rows: data.keys().len(), rows: data.keys().len(),
stroke: none, stroke: none,
table.hline(stroke: (thickness: 0.3mm)), table.hline(stroke: (thickness: 0.3mm)),
fill: (x, y) => if (calc.rem(y, 2) == 0) { color.lighten(gray, 50%) } else { white }, fill: (x, y) => if (calc.rem(y, 2) == 0) { tableFillLow } else { tableFillHigh },
..for (label) in data.keys() {
([*#eval(label, mode: "math")*], table.hline(stroke: (thickness: 0.3mm)), ) table.vline(),
for i in data.at(label) { ..for (i, label) in data.keys().enumerate() {
(eval(i, mode: "math"),) ([*#eval(label, mode: "math")*], if i > 0 { table.vline() } else { table.vline(stroke: none) })
} },
table.hline(stroke: (thickness: 0.3mm)),
..for (i, v) in data.at("x").enumerate() {
for (col) in data.keys() {
(eval(data.at(col).at(i), mode: "math"),)
} }
},
table.hline(stroke: (thickness: 0.3mm)),
) )
] ]
#let ComplexNumbersSection(i: $i$) = [
$1/#i = #i^(-1) = -#i quad quad #i^2=-1 quad quad sqrt(#i) = 1/sqrt(2) + 1/sqrt(2)#i$
$z in CC = a + b #i quad quad quad z = r dot e^(#i phi)$ \
$z_0 + z_1 = (a_0 + a_1) + (b_0 + b_1) #i$\
$z_0 dot z_1 = (a_1 a_2 - b_1 b_2) + #i (a_1b_2 + a_2 b_1) = r_0 r_1 e^(#i (phi_0 + phi_1))$\
$z^x = r^x dot e^(phi #i dot x) quad x in RR$ \
$z_0/z_1 = r_0/r_1 e^(#i (phi_0 - phi_1)) quad quad quad$
$z^* = a - #i b = r e^(-#i phi)$
$r = abs(z) quad phi = cases(
+ arccos(a/r) space : space a >= 0,
- arccos(a/r) space : space a < 0,
)$
]

290
src/lib/fetModel.typ Normal file
View File

@@ -0,0 +1,290 @@
#import "@preview/zap:0.5.0"
#import "@preview/cetz-plot:0.1.3"
#set page(width: auto, height: auto)
#let FetModelSubstrate = zap.circuit({
import zap: *
import cetz.draw: *
rect(
(0, 0),
(12, 4),
fill: rgb("#ffb1b1"),
name: "p",
)
rect((0, -0.05), (12, -0.05), stroke: 3pt, name: "substrate")
earth("g1", (11.5, 0))
content("substrate", [Bulk], anchor: "north", padding: 0.2)
})
#let FetModel1 = zap.circuit({
import zap: *
import cetz.draw: *
rect(
(0, 0),
(12, 4),
fill: rgb("#ffb1b1"),
name: "p",
)
rect((0, -0.05), (12, -0.05), stroke: 3pt, name: "substrate")
earth("g1", (11.5, 0))
rect((2.75, 3), (5.25, 4), fill: rgb("#61ff9f"), name: "kanal1", radius: (
south: 0.2,
))
rect((6.75, 3), (9.25, 4), fill: rgb("#61ff9f"), name: "kanal2", radius: (
south: 0.2,
))
content("kanal1", [n+], anchor: "center", padding: 0.2)
content("kanal2", [n+], anchor: "center", padding: 0.2)
content("substrate", [Bulk], anchor: "north", padding: 0.2)
})
#let FetModel2 = zap.circuit({
import zap: *
import cetz.draw: *
rect(
(0, 0),
(12, 4),
fill: rgb("#ffb1b1"),
name: "p",
)
rect((0, -0.05), (12, -0.05), stroke: 3pt, name: "substrate")
earth("g1", (11.5, 0))
rect((2.75, 3), (5.25, 4), fill: rgb("#61ff9f"), name: "kanal1", radius: (
south: 0.2,
))
rect((6.75, 3), (9.25, 4), fill: rgb("#61ff9f"), name: "kanal2", radius: (
south: 0.2,
))
content("kanal1", [n+], anchor: "center", padding: 0.2)
content("kanal2", [n+], anchor: "center", padding: 0.2)
content("substrate", [Bulk], anchor: "north", padding: 0.2)
rect((0, 4), (12, 4.5), fill: rgb("#fffc61"), name: "isolator")
content("isolator.west", [Isolator ($"SiO"_2$)], anchor: "west", padding: .2)
})
#let FetModel3 = zap.circuit({
import zap: *
import cetz.draw: *
rect(
(0, 0),
(12, 4),
fill: rgb("#ffb1b1"),
name: "p",
)
rect((0, -0.05), (12, -0.05), stroke: 3pt, name: "substrate")
earth("g1", (11.5, 0))
rect((2.75, 3), (5.25, 4), fill: rgb("#61ff9f"), name: "kanal1", radius: (
south: 0.2,
))
rect((6.75, 3), (9.25, 4), fill: rgb("#61ff9f"), name: "kanal2", radius: (
south: 0.2,
))
content("kanal1", [n+], anchor: "center", padding: 0.2)
content("kanal2", [n+], anchor: "center", padding: 0.2)
content("substrate", [Bulk], anchor: "north", padding: 0.2)
rect((0, 4), (3, 4.5), fill: rgb("#fffc61"), name: "isolator2")
rect((5, 4), (7, 4.5), fill: rgb("#fffc61"))
rect((9, 4), (12, 4.5), fill: rgb("#fffc61"), name: "isolator")
rect((3, 4), (5, 4.25), fill: gray)
rect((7, 4), (9, 4.25), fill: gray)
rect((5.1, 4.5), (6.9, 4.75), fill: gray)
content("isolator", [$"SiO"_2$])
content("isolator2", [Isolator])
})
#let FetModel(type: "N", s: 100%) = zap.circuit({
import zap: *
import cetz.draw: rect, content
cetz.draw.scale(s)
let pTypeFill = rgb("#ffb1b1");
let pTypeFill = rgb("#ffb1b1");
let nTypeFill = rgb("#61ff9f")
rect(
(0, 0),
(12, 4),
fill: if(type == "N") { pTypeFill } else { nTypeFill },
name: "p",
)
rect((0, -0.05), (12, -0.05), stroke: 3pt, name: "substrate")
earth("g1", (11.5, 0))
wire((13, 5.5), (13, 0), mark: (end: ">"))
node("n-r1", (13, 5.75))
wire((6, 4.5), (6, 5.75))
node("n-g1", (6, 5.75))
wire("n-g1", "n-r1")
node("n-s1", (4, 5))
wire("n-s1", (4, 4.25))
node("n-d1", (8, 5))
wire("n-d1", (8, 4.25))
rect((0, 4), (3, 4.5), fill: rgb("#fffc61"), name: "isolator2")
rect((5, 4), (7, 4.5), fill: rgb("#fffc61"))
rect((9, 4), (12, 4.5), fill: rgb("#fffc61"), name: "isolator")
rect((3, 4), (5, 4.25), fill: gray)
rect((7, 4), (9, 4.25), fill: gray)
rect((5.1, 4.5), (6.9, 4.75), fill: gray)
content("n-g1", [*G*\ate], anchor: "south", padding: 0.2, auto-scale: true)
content("n-s1", [*S*\ource], anchor: "south", padding: 0.2)
content("n-d1", [*D*\rain], anchor: "south", padding: 0.2, auto-scale: true)
content("substrate", [Bulk], anchor: "north", padding: 0.2, auto-scale: true)
content("p", if type == "N" [p] else [n], auto-scale: true)
content("isolator", [$"SiO"_2$], auto-scale: true)
content("isolator2", [Isolator], auto-scale: true)
rect((2.75, 3), (5.25, 4), fill: if(type == "N") { nTypeFill } else { pTypeFill }, name: "kanal1", radius: (
south: 0.2,
))
rect((6.75, 3), (9.25, 4), fill: if(type == "N") { nTypeFill } else { pTypeFill }, name: "kanal2", radius: (
south: 0.2,
))
content("kanal1", if type == "N" [n+] else [p+], anchor: "center", padding: 0.2, auto-scale: true)
content("kanal2", if type == "N" [n+] else [p+], anchor: "center", padding: 0.2, auto-scale: true)
})
#let FetModelConducting = zap.circuit({
import zap: *
import cetz.draw: *
rect(
(0, 0),
(12, 4),
fill: rgb("#ffb1b1"),
name: "p",
)
rect((0, -0.05), (12, -0.05), stroke: 3pt, name: "substrate")
earth("g1", (11.5, 0))
wire((13, 5.5), (13, 0), mark: (end: ">"))
node("n-r1", (13, 5.75))
wire((6, 4.5), (6, 5.75))
node("n-g1", (6, 5.75))
wire("n-g1", "n-r1")
node("n-s1", (4, 5))
wire("n-s1", (4, 4.25))
node("n-d1", (8, 5))
wire("n-d1", (8, 4.25))
rect((0, 4), (3, 4.5), fill: rgb("#fffc61"), name: "isolator2")
rect((5, 4), (7, 4.5), fill: rgb("#fffc61"))
rect((9, 4), (12, 4.5), fill: rgb("#fffc61"), name: "isolator")
rect((3, 4), (5, 4.25), fill: gray)
rect((7, 4), (9, 4.25), fill: gray)
rect((5.1, 4.5), (6.9, 4.75), fill: gray)
content("n-g1", [*G*\ate], anchor: "south", padding: 0.2)
content("n-s1", [*S*\ource], anchor: "south", padding: 0.2)
content("n-d1", [*D*\rain], anchor: "south", padding: 0.2)
content("substrate", [Bulk], anchor: "north", padding: 0.2)
content("p", [p])
content("isolator", [$"SiO"_2$])
content("isolator2", [Isolator])
rect((2.75, 3), (5.25, 4), fill: rgb("#61ff9f"), name: "kanal1", radius: (
south: 0.2,
))
rect((6.75, 3), (9.25, 4), fill: rgb("#61ff9f"), name: "kanal2", radius: (
south: 0.2,
))
rect((5.20, 3.99), (6.8, 3.9), fill: rgb("#61ff9f"), stroke: none)
content("kanal1", [n+], anchor: "center", padding: 0.2)
content("kanal2", [n+], anchor: "center", padding: 0.2)
rect((0.5, -1), (1, -0.70), fill: gray, stroke: none, name: "metal")
content("metal", [metal], anchor: "west", padding: 0.3)
rect((0.5, -1.2), (1, -1.5), fill: rgb("#61ff9f"), stroke: none, name: "n")
content("n", [n+], anchor: "west", padding: 0.3)
rect(
(2.5, -1),
(3, -0.7),
fill: rgb("#ffb1b1"),
stroke: none,
name: "p-substrate",
)
content("p-substrate", [p], anchor: "west", padding: 0.3)
rect((2.5, -1.2), (3, -1.5), fill: rgb("#fffc61"), stroke: none, name: "siO2")
content("siO2", [oxide], anchor: "west", padding: 0.3)
})
#let FetPlot() = {
let u_gs = 1
let beta = 1
cetz.canvas({
import cetz-plot: plot
import cetz: draw.content
cetz.draw.set-style(axes: (
shared-zero: false,
overshoot: 0.2,
x: (mark: (end: ">", fill: black, scale: 0.6)),
y: (mark: (end: ">", fill: black, scale: 0.6)),
))
plot.plot(
size: (2, 2),
name: "plot",
axis-style: "school-book",
x-min: 0,
x-tick-step: none,
y-tick-step: none,
x-label: $U_"GS"$,
y-label: $U_"DS"$,
{
plot.add-fill-between(domain: (1, 6), ((1, 0), (1, 5)), u_gs => u_gs - u_t)
plot.add(domain: (0, 5), fill: true, axes: ("y", "x"), _ => 1)
plot.add(domain: (1, 6), fill: true, u_gs => u_gs - u_t)
plot.add-anchor("I", (0.5, 2.5))
plot.add-anchor("II", (4.5, 1.5))
plot.add-anchor("III", (2.5, 3.5))
plot.add-anchor("ut", (u_t, 0))
}
)
content("plot.ut", $U_t$, anchor: "north", padding: 0.1)
content("plot.I", [I])
content("plot.II", [II])
content("plot.III", [III])
})
}

62
src/lib/logic.typ Normal file
View File

@@ -0,0 +1,62 @@
#import "@preview/zap:0.5.0": *
#import "@preview/cetz:0.4.2": (
draw.anchor, draw.arc-through, draw.circle, draw.content, draw.line, draw.rect, draw.rotate, draw.get-ctx, draw.bezier
)
#let logic(name, node, text: $"&"$, invert: false, mirror: false, invert-inputs: (), angle: 0deg, inputs: 2, ..params) = {
assert(inputs >= 1, message: "logic supports minimum one inputs")
let style = (
width: 0.7,
min-height: 0.9,
spacing: 0.4,
padding: 0.25,
fill: white,
stroke: auto,
)
// Drawing function
let draw(ctx, position, _) = {
rotate(angle)
let height = calc.max(style.min-height, (inputs - 1) * style.spacing + 2 * style.padding)
let width = style.width * if mirror { -1 } else { 1 }
interface((-width / 2, -height / 2), (width / 2, height / 2), io: false)
rect((-width / 2, -height / 2), (rel: (width, height)), fill: style.fill, stroke: style.stroke)
content((0, height / 2 - style.padding / 2), text, anchor: "north", angle: angle)
let ball-radius = calc.min(height, width) * 0.1
for input in range(1, inputs + 1) {
let pad = (height - (inputs - 1) * style.spacing) / 2
let y = height / 2 - pad - (input - 1) * style.spacing;
if input in invert-inputs {
circle((-width / 2 - ball-radius, y), radius: ball-radius, stroke: style.stroke, fill: style.fill)
anchor("in" + str(input), (-width / 2, y))
} else {
anchor("in" + str(input), (-width / 2, y))
}
}
if invert {
circle((width / 2 + ball-radius, 0), radius: ball-radius, stroke: style.stroke, fill: style.fill)
anchor("out", (width / 2, 0))
} else {
anchor("out", (width / 2, 0))
}
}
// Component call
component("logic", name, node, draw: draw, ..params)
}
#let lnot(name, node, ..params) = logic(name, node, ..params, text: $1$, invert: true)
#let land(name, node, ..params) = logic(name, node, ..params, text: $"&"$)
#let lnand(name, node, ..params) = logic(name, node, ..params, text: $"&"$, invert: true)
#let lor(name, node, ..params) = logic(name, node, ..params, text: $>=1$)
#let lnor(name, node, ..params) = logic(name, node, ..params, text: $>=1$, invert: true)
#let lxor(name, node, ..params) = logic(name, node, ..params, text: $=1$)
#let lxnor(name, node, ..params) = logic(name, node, ..params, text: $=1$, invert: true)

View File

@@ -0,0 +1,13 @@
// Math macors
#let kern(x) = $op("kern")(#x)$
#let alg(x) = $op("alg")(#x)$
#let geo(x) = $op("geo")(#x)$
#let spann(x) = $op("spann")(#x)$
#let Bild(x) = $op("Bild")(#x)$
#let Rang(x) = $op("Rang")(#x)$
#let Eig(x) = $op("Eig")(#x)$
#let lim = $limits("lim")$
#let ip(x, y) = $lr(angle.l #x, #y angle.r)$
#show math.integral: it => math.limits(math.integral)
#show math.sum: it => math.limits(math.sum)

80
src/lib/table.typ Normal file
View File

@@ -0,0 +1,80 @@
#import "@preview/zap:0.5.0"
#import "logic.typ"
#let circuit(body) = zap.circuit({
import zap: *
set-style(
node: (
radius: 0.04,
)
)
body
})
#table(
columns: (1fr, 1fr),
align: center + horizon,
stroke: (x, y) => (
left: if x > 0 { 0.5pt },
top: if y == 1 { 1pt } else if y > 0 { 0.5pt },
),
table.header([DNF], [KNF]),
circuit({
import zap: *
logic.land("A1", (0, 0.75), invert-inputs: (1,))
logic.land("A2", (0, -0.75), invert-inputs: (2,))
logic.lor("O1", (1.25, 0))
zwire("A1.out", "O1.in1", ratio: 50%)
zwire("A2.out", "O1.in2", ratio: 50%)
wire((-1, 1.25), (-1, -1.25), name: "A")
wire((-0.75, 1.25), (-0.75, -1.25), name: "B")
cetz.draw.content("A.in", [a], anchor: "south", padding: 2pt)
cetz.draw.content("B.in", [b], anchor: "south", padding: 2pt)
node("N4", ("A1.in1", "-|", "A.in"))
wire("A1.in1", "N4")
node("N3", ("A1.in2", "-|", "B.in"))
wire("A1.in2", "N3")
node("N2", ("A2.in1", "-|", "A.in"))
wire("A2.in1", "N2")
node("N1", ("A2.in2", "-|", "B.in"))
wire("A2.in2", "N1")
wire("O1.out", (rel: (0.3, 0)))
}),
circuit({
import zap: *
logic.lor("A1", (0, 0.75))
logic.lor("A2", (0, -0.75), invert-inputs: (1,2))
logic.land("O1", (1.25, 0))
zwire("A1.out", "O1.in1", ratio: 50%)
zwire("A2.out", "O1.in2", ratio: 50%)
wire((-1, 1.25), (-1, -1.25), name: "A")
wire((-0.75, 1.25), (-0.75, -1.25), name: "B")
cetz.draw.content("A.in", [a], anchor: "south", padding: 2pt)
cetz.draw.content("B.in", [b], anchor: "south", padding: 2pt)
node("N4", ("A1.in1", "-|", "A.in"))
wire("A1.in1", "N4")
node("N3", ("A1.in2", "-|", "B.in"))
wire("A1.in2", "N3")
node("N2", ("A2.in1", "-|", "A.in"))
wire("A2.in1", "N2")
node("N1", ("A2.in2", "-|", "B.in"))
wire("A2.in2", "N1")
wire("O1.out", (rel: (0.3, 0)))
})
)

35
src/lib/truthtable.typ Normal file
View File

@@ -0,0 +1,35 @@
#let truth-table(outputs: (), inputs: none) = {
let variables = calc.max(..outputs.map(output => calc.ceil(calc.log(output.at(1).len()) / calc.log(2))))
if inputs == none {
inputs = ($a$, $b$, $c$, $d$).slice(0, variables)
}
assert(outputs.len() >= 1, message: "There has to be at least one output")
assert(inputs.len() == variables, message: "There aren't enough variables to label")
let num-to-bin(x, digits) = {
let bits = ()
while x != 0 {
bits.push(calc.rem(x, 2))
x = calc.floor(x / 2)
}
range(digits).map(x => bits.at(digits - x - 1, default: 0))
}
table(
columns: (auto,) * (variables + outputs.len()),
stroke: (x, y) => (
left: if x == variables { 1pt } else if x > 0 { 0.5pt },
top: if y == 1 { 1pt } else if y > 0 { 0.5pt },
),
inset: 4pt,
if inputs != none { table.header(..inputs.map(x => [#x]), ..outputs.map(((x, _)) => [#x])) },
..range(calc.pow(2, variables))
.map(x => (..num-to-bin(x, variables).map(y => [#y]), ..outputs.map(((_, y)) => [#y.at(x, default: [])])))
.flatten()
)
}