Adde partial bruch zwerlegung
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 17s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 17s
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
#let lim = $limits("lim")$
|
||||
|
||||
#set text(7pt)
|
||||
#set text(7.5pt)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
@@ -43,7 +43,7 @@
|
||||
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
#columns(5, gutter: 2mm)[
|
||||
|
||||
// Allgemeiner Shit
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
@@ -90,6 +90,16 @@
|
||||
[
|
||||
*Fakultäten* $0! = 1! = 1$ \
|
||||
],
|
||||
[
|
||||
*Mitternachtsformel*
|
||||
$x_(1,2) = (-b plus.minus sqrt(b^2 + 4a c))/(2a)$
|
||||
],
|
||||
[
|
||||
*Binomische Formel*\
|
||||
$(a + b)^2 = a^2 + 2a b + b^2$\
|
||||
$(a - b)^2 = a^2 - 2a b + b^2$\
|
||||
$(a + b)(a - b) = a^2 - b^2$\
|
||||
]
|
||||
)
|
||||
]
|
||||
|
||||
@@ -511,14 +521,15 @@
|
||||
|
||||
// Ableitungstabelle
|
||||
#block([
|
||||
#set text(size: 10pt)
|
||||
#set text(size: 7pt)
|
||||
#table(
|
||||
align: horizon,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
columns: (auto, auto, auto),
|
||||
table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]),
|
||||
row-gutter: 1mm,
|
||||
fill: (x, y) => if x == 0 { color.hsl(180deg, 89.47%, 88.82%) }
|
||||
else if x == 1 { color.hsl(180deg, 100%, 93.14%) } else
|
||||
inset: 1.4mm,
|
||||
fill: (x, y) => if calc.rem(x, 3) == 0 { color.hsl(180deg, 89.47%, 88.82%) }
|
||||
else if calc.rem(x, 3) == 1 { color.hsl(180deg, 100%, 93.14%) } else
|
||||
{ color.hsl(180deg, 81.82%, 95.69%) },
|
||||
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
|
||||
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
|
||||
@@ -526,6 +537,10 @@
|
||||
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
|
||||
[$e^x$], [$e^x$], [$e^x$],
|
||||
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
|
||||
$-cos(x)$, $sin(x)$, $cos(x)$,
|
||||
$sin(x)$, $cos(x)$, $-sin(x)$,
|
||||
$-ln abs(cos(x))$, $tan(x)$, $1/(cos(x)^2)$,
|
||||
$ln abs(sin(x))$, $cot(x)$, $-1/(sin(x)^2)$,
|
||||
|
||||
[$x arcsin(x) + sqrt(1 - x^2)$],
|
||||
[$arcsin(x)$], [$1/sqrt(1 - x^2)$],
|
||||
@@ -536,16 +551,16 @@
|
||||
[$x arctan(x) - 1/2 ln abs(1 + x^2)$],
|
||||
[$arctan(x)$], [$1/(1 + x^2)$],
|
||||
|
||||
[$x op("arccot")(x) + \ 1/2 ln abs(1 + x^2)$],
|
||||
[$x op("arccot")(x) + 1/2 ln abs(1 + x^2)$],
|
||||
[$op("arccot")(x)$], [$-1/(1 + x^2)$],
|
||||
|
||||
[$x op("arsinH")(x) + \ sqrt(1 + x^2)$],
|
||||
[$x op("arsinH")(x) + sqrt(1 + x^2)$],
|
||||
[$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$],
|
||||
|
||||
[$x op("arcosH")(x) + \ sqrt(1 + x^2)$],
|
||||
[$x op("arcosH")(x) + sqrt(1 + x^2)$],
|
||||
[$op("arcosH")(x)$], [$1/sqrt(x^2-1)$],
|
||||
|
||||
[$x op("artanH")(x) + \ 1/2 ln(1 - x^2)$],
|
||||
[$x op("artanH")(x) + 1/2 ln(1 - x^2)$],
|
||||
[$op("artanH")(x)$], [$1/(1 - x^2)$],
|
||||
)
|
||||
])
|
||||
@@ -691,24 +706,58 @@
|
||||
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral)[Partial-Bruch-Zerlegung]
|
||||
Form: $integral "Zähler Polynom"/"Nenner Polynom"$,
|
||||
$deg("Nenner") < deg("Zähler")$
|
||||
1. $deg("Zähler") >= deg("Nenner") ->$ *Polynomdivision*
|
||||
2. *Faktorisieren des Nenners (Nst finden)*, \
|
||||
Polynomdivision, Raten, Binomische Formel \
|
||||
Resulat: $N = (x - x_0)^(n_0+)(x - x_1)^(n_1)... (x^2+b x + c)^(m_1)$
|
||||
3. *Ansatz:* $A$\
|
||||
$(x-x_0)^n -> A/((x - x_0)^n) + B/((x - x_0)^(n-1)) ... + C/(x - x_0)$\
|
||||
$(x^2 + b x + c)^n -> (A x + B)/((x^2 + b x + c)^n) ... + (C x + D)/((x^2 + b x + c)^1) $
|
||||
|
||||
4. *Durchmul.* $"Ansatz" dot 1/("Fakt. Nenner") = "Zähler"$
|
||||
5. $A,B,...$ :
|
||||
Nst einsetzen, dann Koeffizientenvergleich
|
||||
6. *Intergral wiederzusammen setzen $+c$*
|
||||
7. Summen teile Integrieren
|
||||
|
||||
$delta = 4a - b^2$
|
||||
#grid(columns: (auto, auto),
|
||||
row-gutter: 2mm,
|
||||
column-gutter: 2mm,
|
||||
$integral 1/(x - x_0)$, $ln abs(x - x_0)$,
|
||||
$integral 1/((x - x_0)^n)$, $-1/((n-1)(x-x_0)^(n-1))$,
|
||||
$integral 1/(x^2 + b x + c)$, $2/sqrt(delta) arctan((2x + b)/sqrt(delta))$,
|
||||
$integral 1/((x^2 + b x + c)^n)$, $(2x + b)/((n-1)(sigma)(x^2+b x +c)^(n-1)) + \
|
||||
(2(2n-3))/((n-1)(delta)) + (C )
|
||||
$,
|
||||
)
|
||||
|
||||
|
||||
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein)[Bedingungen]
|
||||
#subHeading(fill: colorAllgemein)[Notwending und Hinreiched]
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
inset: (left: 2mm, right: 2mm),
|
||||
$not "notwending" => not "Satz"$,
|
||||
$"hinreichend" => "Satz"$,
|
||||
$"Satz" => forall "notwending" $,
|
||||
$not "Satz" => forall not "hinreichend" $,
|
||||
$not "not." => not "Satz"$,
|
||||
$"hin." => "Satz"$,
|
||||
$"Satz" => forall "not." $,
|
||||
$not "Satz" => forall not "hin." $,
|
||||
|
||||
$"notwending" arrow.r.double.not "Satz"$,
|
||||
$not "hinreichend" arrow.r.double.not "Satz"$,
|
||||
$"not." arrow.r.double.not "Satz"$,
|
||||
$not "hin." arrow.r.double.not "Satz"$,
|
||||
)
|
||||
])
|
||||
]
|
||||
|
||||
@@ -186,7 +186,31 @@
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorRealsierung)[
|
||||
#subHeading(fill: colorRealsierung)[CMOS]
|
||||
#subHeading(fill: colorRealsierung)[CMOS Verzögerung]
|
||||
|
||||
*Inverter*\
|
||||
$t_("p"/"nLH") ~ (C_"L" t_"ox" L_"p/n")/(W_"p/n" mu_"p/n" epsilon(V_"DD" - abs(V_"Tpn"))) $
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
[
|
||||
*Steigend mit*
|
||||
- Last $C_L$
|
||||
- Oxyddicke $T_"ox"$
|
||||
- Kandlalänge $L_"p/n"$
|
||||
- Schwellspannung $V_"Tp/n"$
|
||||
],
|
||||
[
|
||||
*Sinkend mit*
|
||||
- Kanalweite
|
||||
- Landsträger Veweglichkeit $mu_"p/n"$
|
||||
],
|
||||
|
||||
)
|
||||
|
||||
$t_p ~ C_L/(beta(V_"DD" - abs(V_"T")))$
|
||||
|
||||
$t_p ~ C_L/(W(V_"DD" - abs(V_"T")))$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
|
||||
Reference in New Issue
Block a user