Compare commits
24 Commits
latest
...
776543c8ed
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
776543c8ed | ||
|
|
0ce7c5d623 | ||
|
|
b08a40dddc | ||
|
|
52e2d52813 | ||
|
|
195b64517f | ||
|
|
de36fc2841 | ||
|
|
0fbfb477b3 | ||
|
|
e724fd14cc | ||
|
|
36ea2514a2 | ||
|
|
9eb3d16c32 | ||
|
|
62d6ce0e5c | ||
|
|
1c7b4decdb | ||
|
|
d56fe69e9d | ||
|
|
cdc9d721ec | ||
|
|
c0ba6d9bcc | ||
|
|
7db8bd3ce7 | ||
|
|
f53eaa776e | ||
| 4093cde50a | |||
|
|
58d114d895 | ||
|
|
a36d8b0c51 | ||
|
|
a578c545e8 | ||
|
|
042300ed1f | ||
|
|
af0d1d060e | ||
|
|
8aa363b825 |
@@ -29,15 +29,19 @@ jobs:
|
||||
|
||||
- name: Compile Analysis1
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Analysis1.typ build/Analysis1.pdf
|
||||
run: typst compile --root src src/cheatsheets/Analysis1.typ "build/sem1-Analysis_1.pdf"
|
||||
|
||||
- name: Compile Schaltungstheorie
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ build/Schaltungstheorie.pdf
|
||||
run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ "build/sem1-Schaltungstheorie.pdf"
|
||||
|
||||
- name: Compile LinAlg
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/LinearAlgebra.typ build/LinearAlgebra.pdf
|
||||
run: typst compile --root src src/cheatsheets/LinearAlgebra.typ "build/sem1-Lineare-algebra.pdf"
|
||||
|
||||
- name: Compile Digtaltechnik
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Digitaltechnik.typ "build/sem1-Digitaltechnik.pdf"
|
||||
|
||||
- name: Create Gitea Release
|
||||
continue-on-error: true
|
||||
@@ -45,4 +49,8 @@ jobs:
|
||||
with:
|
||||
name: "Formelsammlungen PDFs"
|
||||
tag_name: "latest"
|
||||
files: build/*.pdf
|
||||
files: build/*.pdf
|
||||
|
||||
- name: Trigger
|
||||
continue-on-error: true
|
||||
run: curl -u trigger:${{ secrets.TRIGGER_PASSWORD }} -X POST https://trigger.typst4ei.de/trigger/all
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -4,4 +4,6 @@ node_modules
|
||||
__pycache__/
|
||||
|
||||
package-lock.json
|
||||
package.json
|
||||
package.json
|
||||
|
||||
*.pdf
|
||||
4135
build/Analysis1.pdf
4135
build/Analysis1.pdf
File diff suppressed because one or more lines are too long
@@ -1,6 +1,12 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
#let lim = $limits("lim")$
|
||||
|
||||
#set text(7.5pt)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
@@ -37,45 +43,67 @@
|
||||
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
#columns(5, gutter: 2mm)[
|
||||
|
||||
// Allgemeiner Shit
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Allgemeins]
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
row-gutter: 2mm,
|
||||
column-gutter: 3mm,
|
||||
[Dreiecksungleichung], [
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$
|
||||
],
|
||||
[Cauchy-Schwarz-Ungleichung], [
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
||||
],
|
||||
[Geometrische Summenformel], [
|
||||
#MathAlignLeft($ limits(sum)_(k=1)^(n) k = (n(n+1))/2 $)
|
||||
],
|
||||
[Bernoulli-Ungleichung ], [
|
||||
$(1 + a)^n x in RR >= 1 + n a$
|
||||
],
|
||||
[Binomialkoeffizient], [
|
||||
$binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
],
|
||||
[Binomische Formel], [
|
||||
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
|
||||
],
|
||||
[Fakultäten], [$ 0! = 1! = 1 $],
|
||||
|
||||
[Gausklammer], [
|
||||
$floor(x) = text("floor")(x)$ \
|
||||
$ceil(x) = text("ceil")(x)$
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
inset: 0mm,
|
||||
gutter: 2mm,
|
||||
[
|
||||
*Dreiecksungleichung* \
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
|
||||
],
|
||||
[Bekannte Werte], [
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
[
|
||||
*Cauchy-Schwarz-Ungleichung*\
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
|
||||
],
|
||||
[
|
||||
*Geometrische Summenformel*\
|
||||
$sum_(k=1)^(n) k = (n(n+1))/2$ \
|
||||
],
|
||||
[
|
||||
*Bernoulli-Ungleichung* \
|
||||
$(1 + a)^n x in RR >= 1 + n a$ \
|
||||
],
|
||||
[
|
||||
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
],
|
||||
[
|
||||
*Binomische Formel*\
|
||||
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
],
|
||||
[
|
||||
*Bekannte Werte* \
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
],
|
||||
[
|
||||
*Gaußklammer*: \
|
||||
$floor(x) = text("floor")(x)$ \
|
||||
$ceil(x) = text("ceil")(x)$ \
|
||||
],
|
||||
[
|
||||
*Fakultäten* $0! = 1! = 1$ \
|
||||
],
|
||||
[
|
||||
*Mitternachtsformel*
|
||||
$x_(1,2) = (-b plus.minus sqrt(b^2 + 4a c))/(2a)$
|
||||
],
|
||||
[
|
||||
*Binomische Formel*\
|
||||
$(a + b)^2 = a^2 + 2a b + b^2$\
|
||||
$(a - b)^2 = a^2 - 2a b + b^2$\
|
||||
$(a + b)(a - b) = a^2 - b^2$\
|
||||
]
|
||||
)
|
||||
]
|
||||
|
||||
// Complex Zahlen
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
||||
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
||||
@@ -84,34 +112,44 @@
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
row-gutter: 2mm,
|
||||
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
|
||||
grid.cell(
|
||||
colspan: 1,
|
||||
align: center,
|
||||
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
),
|
||||
grid.cell(
|
||||
colspan: 1,
|
||||
align: center,
|
||||
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
)
|
||||
|
||||
)
|
||||
#subHeading(fill: colorAllgemein)[Trigonmetrie]
|
||||
*Additionstheorem* \
|
||||
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$tan(x +y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
|
||||
$arctan(1/x) + arctan(x) = cases(
|
||||
x > 0 : pi/2,
|
||||
x < 0 : -pi/2
|
||||
)$
|
||||
|
||||
*Doppelwinkel Formel* \
|
||||
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||
$sin(2x) = 2sin(x)cos(x)$
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos^2(x) = (1 + cos(2x))/2$],
|
||||
[$sin^2(x) = (1 - cos(2x))/2$]
|
||||
)
|
||||
|
||||
$cos^2(x) + sin^2(x) = 1$
|
||||
git config pull.rebase falsegit config pull.rebase false
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos(-x) = cos(x)$],
|
||||
[$sin(-x) = -sin(x)$],
|
||||
gutter: 2mm,
|
||||
columns: (auto, auto, auto),
|
||||
$cos^2(x) = (1 + cos(2x))/2$,
|
||||
$sin^2(x) = (1 - cos(2x))/2$,
|
||||
$cos(-x) = cos(x)$,
|
||||
$sin(-x) = -sin(x)$,
|
||||
grid.cell(colspan: 2, $cos^2(x) + sin^2(x) = 1$)
|
||||
)
|
||||
|
||||
Subsitution mit Hilfsvariable
|
||||
@@ -125,7 +163,8 @@
|
||||
[$tan(x)=-cot(x + pi/2)$],
|
||||
[$cot(x)=-tan(x + pi/2)$],
|
||||
[$cos(x - pi/2) = sin(x)$],
|
||||
[$sin(x + pi/2) = cos(x)$],
|
||||
[$sin(x + pi/2) = cos(x)$],
|
||||
|
||||
)
|
||||
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
|
||||
|
||||
@@ -134,9 +173,9 @@
|
||||
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
||||
]
|
||||
|
||||
// Folgen Allgemein
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen]
|
||||
$ lim_(x -> infinity) a_n $
|
||||
|
||||
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
|
||||
- Beweiße: durch Induktion
|
||||
@@ -146,17 +185,14 @@
|
||||
*Monoton fallend/steigended*
|
||||
- Beweise: Induktion
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 1mm,
|
||||
row-gutter: 2mm,
|
||||
inset: 0.2mm,
|
||||
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
|
||||
[$ a_(n+1) <= a_(n) $],
|
||||
[$ a_(n+1) >= a_(n) $],
|
||||
[$ a_(n+1)/a_(n) < 1 $],
|
||||
[$ a_(n+1)/a_(n) > 1 $],
|
||||
[$ a_(n+1) <= a_(n), quad a_(n+1) >= a_(n) $],
|
||||
[$ a_(n+1)/a_(n) < 1, quad a_(n+1)/a_(n) > 1 $],
|
||||
)
|
||||
|
||||
*Konvergentz Allgemein*
|
||||
$ lim_(n -> infinity) a_n = a $
|
||||
$lim_(n -> infinity) a_n = a$
|
||||
|
||||
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \
|
||||
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
|
||||
@@ -168,31 +204,59 @@
|
||||
*Konvergentz Häufungspunkte*
|
||||
- $a_n -> a <=>$ Alle Teilfolgen $-> a$
|
||||
|
||||
*Konvergenz Beweißen*
|
||||
- Monoton UND Beschränkt $=>$ Konvergenz
|
||||
NICHT Umgekehert
|
||||
- (Cauchyfolge \
|
||||
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
|
||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $=>$ Konvergenz)
|
||||
- $a_n$ unbeschränkt $=>$ divergenz
|
||||
*Folgen in $CC$* (Alle Regeln von $RR$ gelten)\
|
||||
- $z_n in CC : lim z_n <=> lim abs(z_n) = 0$
|
||||
- Zerlegen in $a + b i$ oder $abs(z) dot e^(i phi)$
|
||||
]
|
||||
|
||||
*Konvergent Grenzwert finden*
|
||||
// Folgen Strat
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
|
||||
- Von Bekannten Ausdrücken aufbauen
|
||||
- *Monoton UND Beschränkt $=>$ Konvergenz*
|
||||
- Fixpunk Gleichung: $a = f(a)$ \
|
||||
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
|
||||
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
|
||||
$(1 + a)^n >= 1 + n a$
|
||||
- Sandwitchtheorem:\
|
||||
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
|
||||
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
- Zwerlegen in Konvergente Teil folgen \
|
||||
(Vorallem bei $(-1)^n dot a_n$)
|
||||
- (Cauchyfolge \
|
||||
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
|
||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $=>$ Konvergenz)
|
||||
|
||||
|
||||
*Divergenz*
|
||||
- $a_n$ unbeschränkt $=>$ divergenz
|
||||
- Vergleichskriterium: \
|
||||
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
]
|
||||
|
||||
// L'Hospital
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Konvergent Folge Regeln]
|
||||
#subHeading(fill: colorFolgen)[L'Hospital]
|
||||
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
|
||||
|
||||
(Konvergenz gegen $b$, beliebiges $a$)
|
||||
|
||||
Bendingungen:
|
||||
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
|
||||
2. $g'(x) != 0, x in (a,b)$
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ konveriert
|
||||
|
||||
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
|
||||
|
||||
Kann auch Reksuive angewendet werden!
|
||||
|
||||
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||
]
|
||||
|
||||
// Bekannte Folgen
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Bekannte Folgen]
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
align: bottom,
|
||||
@@ -207,20 +271,16 @@
|
||||
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
||||
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Bekannte Folgen]
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto, auto),
|
||||
columns: (auto, auto),
|
||||
column-gutter: 4mm,
|
||||
row-gutter: 2mm,
|
||||
align: bottom,
|
||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||
[],
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
|
||||
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
MathAlignLeft($ e^x = lim_(n->infinity) (1 + x/n)^n $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
|
||||
0 &abs(q),
|
||||
1 &q = 1,
|
||||
@@ -230,6 +290,7 @@
|
||||
)
|
||||
]
|
||||
|
||||
// Teilfolgen
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Teilfolgen]
|
||||
$ a_k subset a_n space (text("z.B") k= 2n + 1) $
|
||||
@@ -239,6 +300,7 @@
|
||||
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
|
||||
]
|
||||
|
||||
// Reihen
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Reihen]
|
||||
$limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \
|
||||
@@ -246,8 +308,6 @@
|
||||
- *Absolute Konvergenz* \
|
||||
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
|
||||
|
||||
|
||||
|
||||
- *Partialsummen* \
|
||||
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
|
||||
$=>$ _Absolute Konvergent_
|
||||
@@ -279,24 +339,34 @@
|
||||
|
||||
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||
|
||||
- *Geometrische Reihe*
|
||||
$limits(sum)_(n=0)^infinity q^n$
|
||||
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
- *Harmonische Reihe* $limits(sum)_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
- *Reihendarstellungen*
|
||||
1. $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
2. $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
3. $sin(x) = limits(sum)_(n=0)^infinity $
|
||||
4. $cos(x) = limits(sum)_(n=0)^infinity $
|
||||
|
||||
*Reihen in $CC$*
|
||||
- Alles
|
||||
]
|
||||
|
||||
// Potenzreihen
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Potenzreihen]
|
||||
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
column-gutter: 5mm,
|
||||
row-gutter: 1.5mm,
|
||||
|
||||
[*Konvergenzradius*], [$|z - z_0| < R : $ absolute Konvergenz],
|
||||
[], [$|z - z_0| = R : $ Keine Aussage],
|
||||
[], [$|z - z_0| > R : $ Divergent]
|
||||
)
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
$R = lim_(n->infinity) abs(a_n/(a_(n+1))) = 1/(lim_(n->infinity) root(n, abs(a_n)))$,
|
||||
$R = limits(liminf)_(n->infinity) abs(a_n/(a_(n+1))) = 1/(limits(limsup)_(n->infinity) root(n, abs(a_n)))$
|
||||
)
|
||||
|
||||
]
|
||||
|
||||
// Bekannte Reihen
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Bekannte Reihen]
|
||||
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
|
||||
@@ -304,35 +374,75 @@
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
|
||||
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
*Binomische Reihe:*
|
||||
|
||||
*Andere*
|
||||
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
*Reihendarstellungen*
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
gutter: 3mm,
|
||||
row-gutter: 3mm,
|
||||
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
|
||||
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
|
||||
$sin(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n+1))/((2n + 1)!)$,
|
||||
$cos(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n))/((2n)!)$
|
||||
)
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
|
||||
// Ableitung
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Funktionen]
|
||||
Sei $f : [a,b] -> RR$, stetig auf $x in [a,b]$
|
||||
- *Zwischenwertsatz* \
|
||||
$=> forall y in [f(a), f(b)] exists text("min. ein") x in [a,b] : f(x) = y$ \
|
||||
_Beweiß für mindest. n Nst_
|
||||
- *Satze von Rolle* \
|
||||
diffbar $x in (a,b)$\
|
||||
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$
|
||||
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||
|
||||
- *Mittelwertsatz*
|
||||
diffbar $x in (a,b)$ \
|
||||
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
|
||||
$f(x) = y, f : A -> B$
|
||||
|
||||
- *Monotonie* \
|
||||
$x in I : f'(x) < 0$: Streng monoton steigended \
|
||||
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
||||
(Analog bei (streng ) steigned/fallended)
|
||||
*Injectiv (Monomorphismus):* one to one\
|
||||
$f(x) = f(y) <=> x = y quad$
|
||||
|
||||
*Surjectiv (Epimorhismis):* Output space coverered \
|
||||
- $forall x in B : exists x in A : f(x) = y$
|
||||
|
||||
*Bijektiv*
|
||||
|
||||
injektiv UND Surjectiv $<=>$ Umkehrbar
|
||||
]
|
||||
|
||||
// Funktions Sätze
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Funktionen Sätze]
|
||||
$f(x)$ diff'bar $=> f(x)$ stetig
|
||||
|
||||
$f(x)$ stetig diff'bar $=> f(x)$ diff'bar, stetig UND $f'(x)$ stetig
|
||||
|
||||
#line(length: 100%, stroke: 0.3mm)
|
||||
|
||||
Sei $f : I =[a,b] -> RR$, stetig auf $x in I$
|
||||
|
||||
|
||||
- *Zwischenwertsatz* \
|
||||
$=> forall y in ["min", "max"] space exists text("min. ein") x in [a,b] : f(x) = y$ \
|
||||
_Beweiß für mindest. n Nst_
|
||||
|
||||
- *Mittelwertsatz der Diff'rechnung* \
|
||||
diff'bar $x in (a,b)$ \
|
||||
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
|
||||
|
||||
- *Mittelwertsatz der Integralrechnung*\
|
||||
$g -> RR "integrierbar," g(x)>= 0 forall x in [a,b]$\
|
||||
$exists xi in [a,b] : integral_a^b f(x)g(x) d x = f(xi) integral_a^b g(x) d x$
|
||||
|
||||
- *Satze von Rolle* \
|
||||
diffbar $x in (a,b)$\
|
||||
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
|
||||
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||
|
||||
- *Hauptsatz der Integralrechung*
|
||||
Sei $f: [a,b] -> RR$ stetig
|
||||
|
||||
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||
$=> F'(x) = f(x) forall x in [a,b]$
|
||||
]
|
||||
|
||||
// Stetigkeit
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Stetigkeit]
|
||||
*Allgemein*
|
||||
@@ -374,12 +484,12 @@
|
||||
)
|
||||
]
|
||||
|
||||
// Ableitung
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Ableitung]
|
||||
*Differenzierbarkeit*
|
||||
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
|
||||
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
|
||||
- $f(x)$ diffbar $=>$ $f(x)$ stetig
|
||||
- Tangente an $x_0$: $f(x_0) + f'(x_0)(x - x_0)$
|
||||
- Beste #underline([linear]) Annäherung
|
||||
- Tangente $t(x)$ von $f(x)$ an der Stelle $x_0$: $ lim_(x->0) (f(x) - f(x_0))/(x-x_0) -f'(x_0) =0 $
|
||||
@@ -409,22 +519,28 @@
|
||||
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
|
||||
],
|
||||
|
||||
// Ableitungstabelle
|
||||
#block([
|
||||
#set text(size: 10pt)
|
||||
#set text(size: 7pt)
|
||||
#table(
|
||||
align: horizon,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
columns: (auto, auto, auto),
|
||||
table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]),
|
||||
row-gutter: 1mm,
|
||||
fill: (x, y) => if x == 0 { color.hsl(180deg, 89.47%, 88.82%) }
|
||||
else if x == 1 { color.hsl(180deg, 100%, 93.14%) } else
|
||||
inset: 1.4mm,
|
||||
fill: (x, y) => if calc.rem(x, 3) == 0 { color.hsl(180deg, 89.47%, 88.82%) }
|
||||
else if calc.rem(x, 3) == 1 { color.hsl(180deg, 100%, 93.14%) } else
|
||||
{ color.hsl(180deg, 81.82%, 95.69%) },
|
||||
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
|
||||
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
|
||||
[$x ln(a x) - x$], [$ln(a x)$], [$1 / x$],
|
||||
[$x ln(a x) - x$], [$ln(a x)$], [$a / x$],
|
||||
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
|
||||
[$e^x$], [$e^x$], [$e^x$],
|
||||
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
|
||||
$-cos(x)$, $sin(x)$, $cos(x)$,
|
||||
$sin(x)$, $cos(x)$, $-sin(x)$,
|
||||
$-ln abs(cos(x))$, $tan(x)$, $1/(cos(x)^2)$,
|
||||
$ln abs(sin(x))$, $cot(x)$, $-1/(sin(x)^2)$,
|
||||
|
||||
[$x arcsin(x) + sqrt(1 - x^2)$],
|
||||
[$arcsin(x)$], [$1/sqrt(1 - x^2)$],
|
||||
@@ -435,112 +551,213 @@
|
||||
[$x arctan(x) - 1/2 ln abs(1 + x^2)$],
|
||||
[$arctan(x)$], [$1/(1 + x^2)$],
|
||||
|
||||
[$x op("arccot")(x) + \ 1/2 ln abs(1 + x^2)$],
|
||||
[$x op("arccot")(x) + 1/2 ln abs(1 + x^2)$],
|
||||
[$op("arccot")(x)$], [$-1/(1 + x^2)$],
|
||||
|
||||
[$x op("arsinH")(x) + \ sqrt(1 + x^2)$],
|
||||
[$x op("arsinH")(x) + sqrt(1 + x^2)$],
|
||||
[$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$],
|
||||
|
||||
[$x op("arcosH")(x) + \ sqrt(1 + x^2)$],
|
||||
[$x op("arcosH")(x) + sqrt(1 + x^2)$],
|
||||
[$op("arcosH")(x)$], [$1/sqrt(x^2-1)$],
|
||||
|
||||
[$x op("artanH")(x) + \ 1/2 ln(1 - x^2)$],
|
||||
[$x op("artanH")(x) + 1/2 ln(1 - x^2)$],
|
||||
[$op("artanH")(x)$], [$1/(1 - x^2)$],
|
||||
)
|
||||
])
|
||||
|
||||
// Extremstellen, Krümmung, Monotonie
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
|
||||
|
||||
*Monotonie* $forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) <= f(x_1)$
|
||||
|
||||
Hinreichende: $f'(x) >= 0$ \
|
||||
Konstante Funktion bei $f'(x) = 0$
|
||||
|
||||
*Streng Monoton*
|
||||
$forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) < f(x_1)$ \
|
||||
|
||||
Notwendig: $f'(x) >= 0$ (Aber nicht hinreichend)
|
||||
|
||||
*Extremstellen Kandiaten*
|
||||
1. $f'(x) = 0$
|
||||
2. Definitionslücken
|
||||
3. Randstellen von $DD$
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
[
|
||||
*Minima*\
|
||||
$x_0,x in I : f(x_0) < f(x)$ \
|
||||
$f''(x) > 0 $ \
|
||||
$f'(x) : - space 0 space +$
|
||||
],
|
||||
[
|
||||
*Maxima*\
|
||||
$x_0,x in I : f(x_0) > f(x)$ \
|
||||
$f''(x) < 0$ \
|
||||
$f'(x) : + space 0 space -$
|
||||
],
|
||||
[
|
||||
*Wendepunkt*\
|
||||
$f''(x) = 0$ \
|
||||
$f'(x) : plus.minus space ? space plus.minus$
|
||||
],
|
||||
[
|
||||
*Stattelpunkt/Terrasenpunkt* \
|
||||
$f'''(x) != 0$
|
||||
$f''(x) = 0$ UND $f'(x) = 0$ \
|
||||
$f'(x) : plus.minus space 0 space plus.minus$ \
|
||||
],
|
||||
[
|
||||
*Extremstelle* \
|
||||
$f'(x) = 0$
|
||||
]
|
||||
)
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
[
|
||||
*konkav* $f''(x) <= 0$ \ rechtsgekrümmt \
|
||||
Sekante liegt unter $f(x)$ \
|
||||
(eingebäult, von $y= -infinity$ aus)
|
||||
],
|
||||
[
|
||||
*konvex* $f''(x) >= 0$ \ linksgekrümmt \
|
||||
Sekante liegt über $f(x)$ \
|
||||
(ausgebaucht, von $y= -infinity$ aus)
|
||||
]
|
||||
)
|
||||
|
||||
*Strange Konkav/Konvex* \
|
||||
Notwendig $f''(x) lt.gt 0$
|
||||
]
|
||||
|
||||
// Integral
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Wenn $f(x)$ stetig und monoton $=>$ integrierbar
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Ungleichung:* \
|
||||
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
||||
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
$integral_a^b u(x) dot v'(x) d x = [u(x)v(x)]_a^b - integral_a^b u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $t := g(x)$
|
||||
2. Umformen:
|
||||
$(d y)/(d x) = g'(x)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
*Riemann Integral*\
|
||||
$limits(sum)_(x=a)^(b) f(i)(x_())$
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Integral Type*\
|
||||
- Eigentliches Int.: $integral_a^b f(x) d x$
|
||||
- Uneigentliches Int.: \
|
||||
$limits(lim)_(epsilon -> 0) integral_a^(b + epsilon) f(x) d x$ \
|
||||
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
|
||||
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
|
||||
|
||||
*Cauchy-Hauptwert*
|
||||
|
||||
$integral_(-infinity)^(+infinity) f(x)$ \
|
||||
NUR konvergent wenn: \
|
||||
$limits(lim)_(R -> -infinity) integral_(R)^(a) f(x) d x$ und $limits(lim)_(R -> infinity) integral_(a)^(R) f(x) d x$ konvergent für $a in RR$
|
||||
|
||||
$integral_(-infinity)^(infinity) f(x) d x$ existiert \
|
||||
$=> lim_(M -> infinity) integral_(-M)^(M) f(x) d x = integral_(-infinity)^(infinity) f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot 1/(g'(x)) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
1. Ersetzung: $ d x := d t dot g'(x)$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
|
||||
*Absolute "Konvergenz"* \
|
||||
Wenn $g(x)$ konvergent,
|
||||
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral)[Partial-Bruch-Zerlegung]
|
||||
Form: $integral "Zähler Polynom"/"Nenner Polynom"$,
|
||||
$deg("Nenner") < deg("Zähler")$
|
||||
1. $deg("Zähler") >= deg("Nenner") ->$ *Polynomdivision*
|
||||
2. *Faktorisieren des Nenners (Nst finden)*, \
|
||||
Polynomdivision, Raten, Binomische Formel \
|
||||
Resulat: $N = (x - x_0)^(n_0+)(x - x_1)^(n_1)... (x^2+b x + c)^(m_1)$
|
||||
3. *Ansatz:* $A$\
|
||||
$(x-x_0)^n -> A/((x - x_0)^n) + B/((x - x_0)^(n-1)) ... + C/(x - x_0)$\
|
||||
$(x^2 + b x + c)^n -> (A x + B)/((x^2 + b x + c)^n) ... + (C x + D)/((x^2 + b x + c)^1) $
|
||||
|
||||
4. *Durchmul.* $"Ansatz" dot 1/("Fakt. Nenner") = "Zähler"$
|
||||
5. $A,B,...$ :
|
||||
Nst einsetzen, dann Koeffizientenvergleich
|
||||
6. *Intergral wiederzusammen setzen $+c$*
|
||||
7. Summen teile Integrieren
|
||||
|
||||
$delta = 4a - b^2$
|
||||
#grid(columns: (auto, auto),
|
||||
row-gutter: 2mm,
|
||||
column-gutter: 2mm,
|
||||
$integral 1/(x - x_0)$, $ln abs(x - x_0)$,
|
||||
$integral 1/((x - x_0)^n)$, $-1/((n-1)(x-x_0)^(n-1))$,
|
||||
$integral 1/(x^2 + b x + c)$, $2/sqrt(delta) arctan((2x + b)/sqrt(delta))$,
|
||||
$integral 1/((x^2 + b x + c)^n)$, $(2x + b)/((n-1)(sigma)(x^2+b x +c)^(n-1)) + \
|
||||
(2(2n-3))/((n-1)(delta)) + (C )
|
||||
$,
|
||||
)
|
||||
|
||||
|
||||
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein)[Notwending und Hinreiched]
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
inset: (left: 2mm, right: 2mm),
|
||||
$not "not." => not "Satz"$,
|
||||
$"hin." => "Satz"$,
|
||||
$"Satz" => forall "not." $,
|
||||
$not "Satz" => forall not "hin." $,
|
||||
|
||||
$"not." arrow.r.double.not "Satz"$,
|
||||
$not "hin." arrow.r.double.not "Satz"$,
|
||||
)
|
||||
])
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Folgen in $CC$
|
||||
|
||||
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
|
||||
|
||||
Alle folgen regelen gelten
|
||||
|
||||
Complexe Folge kann man in Realteil und Imag zerlegen
|
||||
|
||||
z.B.
|
||||
|
||||
$z_n = z^n z in CC$
|
||||
|
||||
$z = abs(z) dot e^(i phi) = abs(z)^n$
|
||||
|
||||
== Reihen in $CC$
|
||||
|
||||
Fast alles gilt auch.
|
||||
|
||||
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
|
||||
|
||||
Geometrische Reihe gilt.
|
||||
|
||||
Exponential funktion
|
||||
|
||||
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
|
||||
|
||||
Vorsicht: $(b^a)^n = b^(a dot c)$
|
||||
|
||||
Potenzreihen: Eine Fn der form:
|
||||
|
||||
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
|
||||
|
||||
=== Satz
|
||||
|
||||
Konvergenz Radius $R = [0, infinity)$$$
|
||||
|
||||
1. $R = 0$ Konvergiet nur bei $z = 0$
|
||||
|
||||
2. $R in R : cases(
|
||||
z in CC &abs(z - z_0) < R &: "abs Konvergent",
|
||||
z in CC &abs(z - z_0) = R &: "keine Ahnung",
|
||||
z in CC &abs(z - z_0) > R &: "Divergent"
|
||||
)$
|
||||
|
||||
$ R = limsup_(n -> infinity) $
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
|
||||
305
src/cheatsheets/Digitaltechnik.typ
Normal file
305
src/cheatsheets/Digitaltechnik.typ
Normal file
@@ -0,0 +1,305 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
bottom: 10mm,
|
||||
top: 5mm,
|
||||
left: 5mm,
|
||||
right: 5mm
|
||||
),
|
||||
flipped:true,
|
||||
footer: context [
|
||||
#grid(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Digitaltechnik]
|
||||
))
|
||||
|
||||
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||
#let MathAlignLeft(e) = {
|
||||
align(left, block(e))
|
||||
}
|
||||
|
||||
#let colorBoolscheLogic = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorOptimierung = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorRealsierung = color.hsl(280deg, 92.13%, 75.1%)
|
||||
#let colorState = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
//#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
#let LNot(x) = math.op($overline(#x)$)
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
#bgBlock(fill: colorBoolscheLogic)[
|
||||
#subHeading(fill: colorBoolscheLogic)[Allgemein]
|
||||
*Moorsches Gesetz:* 2x der Anzahl der Transistoren pro Fläche (in 2 Jahren)
|
||||
|
||||
Flächenskalierung eines Transistors: $1/sqrt(2)$
|
||||
|
||||
*Kombinatorisch:* Kein Gedächtnis
|
||||
|
||||
*(Synchrone) sequenentielle:* Mit Gedächtnis
|
||||
|
||||
*Fan-In:* Anzahl der Inputs eines Gatters
|
||||
|
||||
*Fan-Out:* Anzahl der Output Verbindungen eines Gatters
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorBoolscheLogic)[
|
||||
#subHeading(fill: colorBoolscheLogic)[Boolsche Algebra]
|
||||
|
||||
*Dualität*
|
||||
$LNot(0) = 1$, $LNot(1) = 0$
|
||||
|
||||
*Äquivalenz* $LNot((LNot(A)))=A$\
|
||||
$A dot A = A$, $A + 0 = A$ \
|
||||
|
||||
*Konstanz*
|
||||
$A dot 1 = A$ $A + 1 = 1$
|
||||
|
||||
*Komplementärgesetz* \
|
||||
$A dot LNot(A) = 0$, $A + LNot(A) = 1$
|
||||
|
||||
*Kommutativgesetz* \
|
||||
$A dot B = B dot A$, $A + B = B + A$
|
||||
|
||||
*Assoziativgesetz*\
|
||||
$A dot (B dot C) = (A dot B) dot C$\
|
||||
$A + (B + C) = (A + B) + C$
|
||||
|
||||
*Distributivgesetz*\
|
||||
$A dot (B + C) = A dot B + A dot C$ \
|
||||
$A + (B dot C) = (A + B) dot (A + C)$
|
||||
|
||||
*De Morgan*\
|
||||
$LNot((A + B)) = LNot(A) dot LNot(B)$\
|
||||
$LNot((A dot B)) = LNot(A) + LNot(B)$
|
||||
|
||||
*Absorptionsgesetz*\
|
||||
$A + (A dot B) = A$\
|
||||
$A dot (A + B) = A$
|
||||
|
||||
*Resolutionsgesetz (allgemein)*\
|
||||
$X dot A + LNot(X) + B = X dot A + LNot(X) dot B + bold(A dot B)$
|
||||
|
||||
*Resolutionsgesetz (speziell)*\
|
||||
$X dot A + LNot(X) dot A = A$\
|
||||
$(X + A) dot (LNot(X) + A) = A$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorBoolscheLogic)[
|
||||
#subHeading(fill: colorBoolscheLogic)[Boolsche Funktionen]
|
||||
|
||||
$f: {0,1}^n -> {0,1}$
|
||||
|
||||
Variablenmenge: ${x_0, x_1, ..., x_n}$\
|
||||
Literalmenge: ${x_0, ..., x_n, LNot(x_0), ... LNot(x_n)}$ \
|
||||
Einsmenge: $F = {underline(v) in {0,1}^n | f(underline(v)) = 1}$
|
||||
Nullmenge: $overline(F) = {underline(v) in {0,1}^n | f(underline(v)) = 0}$
|
||||
Don't-Care-Set: ${underline(v) in {0,1}^n | f(underline(v)) = *}$
|
||||
|
||||
Funktionsbündel: $underline(y) = underline(f)(underline(x))$ \
|
||||
$underline(f): {0,1}^n -> {0,1}^m$
|
||||
|
||||
*Kofaktoren* aka Bit $n$ fixen\
|
||||
$x_i : f_x_i = f(x_1, ..., 1, ..., x_n)$\
|
||||
$overline(x)_i : f_overline(x)_i = f(x_1, ..., 0, ..., x_n)$
|
||||
|
||||
*Substitutionsregel*
|
||||
|
||||
$x_i dot f = x_i dot f_x_i$
|
||||
|
||||
$overline(x)_i dot f = overline(x)_i dot f_overline(x)_i$
|
||||
|
||||
$x_i + f = x_i + f_overline(x)_i$
|
||||
|
||||
$overline(x)_i + f = overline(x)_i + f_x_i$
|
||||
|
||||
*Boolsche Expansion*\
|
||||
$f(underline(x)) = x_i dot f_x_i + overline(x)_i dot f_overline(x)_i$
|
||||
|
||||
$f(underline(x)) = (x_i + f_overline(x)_i) dot (overline(x)_i + f_x_i)$
|
||||
|
||||
$overline(f(underline(x))) = overline(x)_i dot overline(f_overline(x)_i) + x_i dot overline(f_x_i)$
|
||||
|
||||
$overline(f(underline(x))) = (overline(x)_i + overline(f_x_i)) dot (x_i + overline(f_overline(x)_i)) $
|
||||
|
||||
*Eigentschaften:*
|
||||
|
||||
tautologisch: $f(underline(x)) = 1, forall underline(x) in {0,1}^n$\
|
||||
kontradiktorisch: $f(underline(x)) = 0, forall underline(x) in {0,1}^n$\
|
||||
unabhängig von $x_i <=> f_x_i = f_overline(x)_i$\
|
||||
abhängig von $x_i <=> f_x_i != f_overline(x)_i$\
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorOptimierung)[
|
||||
#subHeading(fill: colorOptimierung)[Hauptsatz der Schaltalgebra]
|
||||
Jede $f(x_0, ...,x_n)$ kann als...
|
||||
- *Minterme $m$:* $ = LNot(x)_0 dot x_1 dot ...$\
|
||||
VerODERungen von VerUNDungen\
|
||||
$f(underline(x)) = m_0 + m_1 + ... + m_n$
|
||||
|
||||
- *Maxterme $M$:* $ = LNot(x)_0 + x_1 ü ...$\
|
||||
VerUNDungen von VerODERungen\
|
||||
$f(underline(x)) = m_0 dot m_1 dot ... dot m_n$
|
||||
|
||||
... dargestellt werden
|
||||
|
||||
*DNF:* Disjunktive Normalform, *Minterme*
|
||||
- Term $tilde.equiv$ $1$-Zeile
|
||||
- $LNot(x)_0 dot x_1 + x_0 dot x_1 +...$\
|
||||
- $1 tilde.equiv x_0$, $0 tilde.equiv overline(x_0)$
|
||||
|
||||
*KNF:* Konjunktive Normalform, *Maxterme*
|
||||
- Term $tilde.equiv$ $0$-Zeile
|
||||
- $(LNot(x)_0 + LNot(x)_1) dot (x_0 + x_1) dot...$\
|
||||
- $1 tilde.equiv overline(x_0)$, $0 tilde.equiv x_0$
|
||||
|
||||
Kanonische: In jedem Term müssen alle enthalten sein.
|
||||
|
||||
*KDNF:* Kanonische DNF\
|
||||
*KKNF:* Kanonische KNF
|
||||
|
||||
$f(underline(x)) -->$ *KKNF* / *KDNF* mit Boolsche Expansion
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorOptimierung)[
|
||||
#subHeading(fill: colorOptimierung)[Quine McCluskey]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorRealsierung)[
|
||||
#subHeading(fill: colorRealsierung)[NMOS/PMOS]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorRealsierung)[
|
||||
#subHeading(fill: colorRealsierung)[CMOS Verzögerung]
|
||||
|
||||
*Inverter*\
|
||||
$t_("p"/"nLH") ~ (C_"L" t_"ox" L_"p/n")/(W_"p/n" mu_"p/n" epsilon(V_"DD" - abs(V_"Tpn"))) $
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
[
|
||||
*Steigend mit*
|
||||
- Last $C_L$
|
||||
- Oxyddicke $T_"ox"$
|
||||
- Kandlalänge $L_"p/n"$
|
||||
- Schwellspannung $V_"Tp/n"$
|
||||
],
|
||||
[
|
||||
*Sinkend mit*
|
||||
- Kanalweite
|
||||
- Landsträger Veweglichkeit $mu_"p/n"$
|
||||
],
|
||||
|
||||
)
|
||||
|
||||
$t_p ~ C_L/(beta(V_"DD" - abs(V_"T")))$
|
||||
|
||||
$t_p ~ C_L/(W(V_"DD" - abs(V_"T")))$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Latches, Flipflops und Register]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Timing]
|
||||
|
||||
*Register Bedinungen*
|
||||
|
||||
#cetz.canvas(length: 0.5mm, {
|
||||
import cetz.draw: *
|
||||
|
||||
|
||||
let cycle_time = 38
|
||||
let cycle_start = cycle_time*0.8
|
||||
let cycle_end = cycle_time*4
|
||||
let signal_hight = 10
|
||||
let switch_offset = cycle_time/13
|
||||
let signal_storke = (paint: rgb("#2e2e2e"), thickness: 0.3mm)
|
||||
|
||||
let t_c2q = 0.6
|
||||
let t_setup = 0.6
|
||||
let t_hold = 0.4
|
||||
|
||||
// clk1
|
||||
line((1*cycle_time + switch_offset/2, signal_hight + 1), (1*cycle_time + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
|
||||
|
||||
// q change
|
||||
line((cycle_time*(t_c2q + 1) + switch_offset/2, -15 + signal_hight + 1), (cycle_time*(t_c2q + 1) + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
|
||||
|
||||
// d change
|
||||
line((cycle_time*(t_setup + 2) + switch_offset/2, -30 + signal_hight + 1), (cycle_time*(t_setup + 2) + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
|
||||
|
||||
// clk
|
||||
line((cycle_time*3 + switch_offset/2, signal_hight + 1), (cycle_time*3 + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
|
||||
|
||||
// hold time
|
||||
line((cycle_time*(3+t_hold) + switch_offset/2, -30 + signal_hight + 1), (cycle_time*(3+t_hold) + switch_offset/2, -40), stroke: (paint: rgb("#0004ff"), thickness: 0.4mm, dash: "densely-dashed"))
|
||||
|
||||
|
||||
content(( cycle_start -7, 5), "clk")
|
||||
|
||||
line((cycle_start,0), (cycle_time,0), (cycle_time + switch_offset,signal_hight), (cycle_time*2, signal_hight), (cycle_time*2 + switch_offset, 0), (cycle_time*3, 0), (cycle_time*3 + switch_offset, 10), (cycle_end, signal_hight), stroke: signal_storke)
|
||||
|
||||
translate((0, -15))
|
||||
content((cycle_start -7, 5), "Q")
|
||||
|
||||
line(
|
||||
(cycle_start,0), (cycle_time*(t_c2q + 1), 0),
|
||||
(cycle_time*(t_c2q + 1) + switch_offset, signal_hight),
|
||||
(cycle_time*(t_c2q + 3),signal_hight), (cycle_time*(t_c2q + 3) + switch_offset, 0),
|
||||
(cycle_end + switch_offset, 0),
|
||||
stroke: signal_storke
|
||||
)
|
||||
line(
|
||||
(cycle_start,signal_hight), (cycle_time*(t_c2q + 1), signal_hight),
|
||||
(cycle_time*(t_c2q + 1) + switch_offset, 0),
|
||||
(cycle_time*(t_c2q + 3),0), (cycle_time*(t_c2q + 3) + switch_offset, signal_hight),
|
||||
(cycle_end + switch_offset, signal_hight),
|
||||
stroke: signal_storke
|
||||
)
|
||||
|
||||
translate((0, -15))
|
||||
content((cycle_start -7, 5), "D")
|
||||
|
||||
line(
|
||||
(cycle_start,0), (cycle_time*(t_setup + 2), 0),
|
||||
(cycle_time*(t_setup + 2) + switch_offset, signal_hight), (cycle_end + switch_offset, signal_hight), stroke: signal_storke
|
||||
|
||||
)
|
||||
line(
|
||||
(cycle_start,signal_hight), (cycle_time*(t_setup + 2), signal_hight),
|
||||
(cycle_time*(t_setup + 2) + switch_offset, 0), (cycle_end + switch_offset, 0), stroke: signal_storke
|
||||
)
|
||||
|
||||
|
||||
})
|
||||
|
||||
]
|
||||
|
||||
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Pipeline/Parallele Verarbeitungseinheiten]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Zustandsautomaten]
|
||||
]
|
||||
]
|
||||
@@ -16,12 +16,14 @@
|
||||
number-align: center
|
||||
)
|
||||
|
||||
#set text(size: 8pt)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Linear Algebra EI]
|
||||
))
|
||||
|
||||
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorFolgen = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorMatrix = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorReihen = color.hsl(280deg, 92.13%, 75.1%)
|
||||
#let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
#let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
@@ -173,5 +175,129 @@
|
||||
$op("Rang") f := dim op("Bild") f$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[Matrix Typen]
|
||||
|
||||
*Einheits Matrix* $I,E$
|
||||
|
||||
*Diagonalmatrix*
|
||||
|
||||
*Symetrisch* $S$: \
|
||||
$A A^T$ ist symetrisch
|
||||
|
||||
*Orthogonal* $O$:
|
||||
|
||||
*Unitair:*
|
||||
|
||||
*postiv-semi-definit* \
|
||||
$forall$ Eigenwerte $>= 0$
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
|
||||
#subHeading(fill: colorMatrix)[Eigenwert und Eigenvektoren ]
|
||||
|
||||
$A in CC^(n times n):$ $n$ Complexe Eigenwerte \
|
||||
$A in RR^(n times n)$
|
||||
|
||||
*Eigentwete bestimmen*
|
||||
|
||||
$A v = lambda v$
|
||||
|
||||
Lösen: $0 = det mat(#mannot.markhl($x_11 - lambda_1$, color: red), x_12, ..., x_(1n);
|
||||
x_21, #mannot.markhl($x_22 - lambda_2$, color: red), ..., x_(2n);
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
x_(n 1), x_(n 2), ..., #mannot.markhl($x_(n n) -lambda_n$, color: red)
|
||||
)$
|
||||
|
||||
Charakteristisches Polynom: $chi_(A)$
|
||||
|
||||
|
||||
*Eigenvektor bestimmen*
|
||||
|
||||
Eigentwerte einsetzen: $lambda in {lambda_1, lambda_2, ... lambda}$
|
||||
|
||||
|
||||
*Algebrasche Vielfacheit:* \
|
||||
$sum$ Häufikeit der Nsts von $chi_A$
|
||||
|
||||
*Geometrische Vielfacheit:*\
|
||||
$dim(op("spann")(v_lambda_1, v_lambda_2 ..., v_lambda_n))$ \
|
||||
|
||||
Anzahl der linearunabhänige $v_lambda_i$
|
||||
|
||||
$"Geometrische" <= "Algebrasche"$
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[Diagonalisierung]
|
||||
|
||||
$A = R D R^T$
|
||||
|
||||
$D$: Diagonalmatrix
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[Schur-Zerlegung]
|
||||
immer anwendbar;
|
||||
|
||||
$A in RR^(n times n)\/CC^(n times n)$ zerlegbar in $O^T R O$
|
||||
|
||||
Orthogonal $O,O^T$, Dreiecksmatrix $R$
|
||||
|
||||
$R = mat(lambda_1, *, *,..., *;
|
||||
0, lambda_2, *, ..., *;
|
||||
0, 0, lambda_3, ..., *;
|
||||
dots.v, dots.v, dots.v, dots.down, dots.v;
|
||||
0, 0, 0, ..., lambda_n;
|
||||
)$
|
||||
|
||||
1. Eigenwerte bestimmen $lambda_1, lambda_2, ... lambda_n$
|
||||
2. Eigenvektor $v_lambda_1, v_lambda_2 ..., v_lambda_n$
|
||||
3.
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[SVD]
|
||||
|
||||
$A in RR^(n times m)$ zerlegbar in $A = L S R^T$ \
|
||||
$L$ Orthogonal, $S$ Diagonalmatrix, $R$ Orthogonal \
|
||||
$A^T = R S^T L^T$
|
||||
|
||||
|
||||
*1. $A A^T$ berechnen* $A A^T in RR^(n times n) $
|
||||
|
||||
*2. Eigenwerte von $A A^T$ bestimmen* $lambda_1, lambda_2, ... lambda_n$
|
||||
|
||||
*3. $S$ aufstellen* ($S$ hat gleiche Form wie $A$)
|
||||
|
||||
$sigma_i = sqrt(lambda_i) = S in RR^(n x m) =\ mat(
|
||||
sigma_1, 0, 0, ..., 0, 0, ..., 0;
|
||||
0, sigma_2, 0, ..., 0, 0, ..., 0;
|
||||
0, 0, sigma_3, ..., 0, 0, ..., 0;
|
||||
dots.v, dots.v, dots.v, dots.down, dots.v, dots.v, dots.down, dots.v;
|
||||
0, 0, 0, ..., sigma_m, 0, ... , 0
|
||||
)$
|
||||
|
||||
*4. $R$ bestimmen*
|
||||
|
||||
$op("Eig")(lambda_i) = op("kern")(A A^T - lambda_i) ->$
|
||||
|
||||
$A A^T - lambda_i = 0$ (Gaußverfahren)
|
||||
|
||||
$R = 1/sqrt(lambda_i)$
|
||||
|
||||
*5. $L$ bestimmen*
|
||||
|
||||
$L = 1/sqrt(lambda_i) $
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
]
|
||||
|
||||
|
||||
@@ -1,8 +1,17 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
#import "@preview/zap:0.5.0"
|
||||
#import "@preview/cetz:0.4.2"
|
||||
#import "../lib/circuit.typ" : *
|
||||
#import "@preview/unify:0.7.1": num,qty,unit
|
||||
|
||||
#set math.mat(delim: "[")
|
||||
#show math.equation.where(block: true): it => math.inline(it)
|
||||
#set math.mat(delim: "[")
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
#let jVec(x) = $bold(underline(#x))$
|
||||
#let jMat(x) = $bold(#x)$
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
@@ -18,13 +27,14 @@
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(center, counter(page).display("– 1 –"))],
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorEigenschaften = color.hsl(145.13deg, 92.13%, 75.1%)
|
||||
#let colorEineTore = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorZweiTore = color.hsl(235.9deg, 92.13%, 75.1%)
|
||||
#let colorAnalyseVerfahren = color.hsl(280deg, 92.13%, 75.1%)
|
||||
@@ -35,22 +45,173 @@
|
||||
[Schaltungstheorie]
|
||||
))
|
||||
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
// Allgemein
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Allgemeine]
|
||||
*Konzentriertheitshypotese*\
|
||||
$lambda >> d quad quad lambda = c/f quad quad c approx 3.10dot 10^8 m/s$
|
||||
|
||||
d: größe Bauteil Dimension
|
||||
|
||||
f: Maximal Frequenze
|
||||
|
||||
*Kirchhoff*
|
||||
|
||||
#grid(columns: (1fr, 1fr), row-gutter: 5mm, [
|
||||
KCL: $sum_(k=1)^n i_k =0$ (Knotenregel)
|
||||
], [
|
||||
#cetz.canvas(length: 8mm, {
|
||||
import cetz.draw: *
|
||||
|
||||
circle((0, 0),radius: 1)
|
||||
|
||||
line((angle: 0deg, radius: 0.2), (angle: 0deg, radius: 1.5), stroke: red)
|
||||
line((angle: 120deg, radius: 1.5), (angle: 120deg, radius: 0.2), stroke: red)
|
||||
line((angle: 240deg, radius: 1.5), (angle: 240deg, radius: 0.2), stroke: red)
|
||||
|
||||
set-style(mark: (end: ("straight")))
|
||||
line((angle: 0deg, radius: 0.2), (angle: 0deg, radius: 0.8), stroke: red)
|
||||
line((angle: 120deg, radius: 1.2), (angle: 120deg, radius: 0.4), stroke: red)
|
||||
line((angle: 240deg, radius: 1.2), (angle: 240deg, radius: 0.4), stroke: red)
|
||||
})
|
||||
], [
|
||||
KVL: $sum_(k=1)^n u_k =0$ (Maschenregel)
|
||||
], [
|
||||
#zap.circuit({
|
||||
import zap: wire
|
||||
import cetz.draw: *
|
||||
|
||||
registerAllCustom();
|
||||
|
||||
einTor("F1", (0, -1), (0, 1))
|
||||
einTor("F2", (1.5, 0), (1.5, 1), flip: true)
|
||||
einTor("F3", (1.5, 0), (1.5, -1), flip: true)
|
||||
wire((0, -1), (1.5, -1))
|
||||
wire((0, 1), (1.5, 1))
|
||||
|
||||
translate((0.75, 0))
|
||||
circle((0, 0), radius: 4mm, stroke: blue)
|
||||
translate((0, 1mm))
|
||||
mark((angle: 180deg, radius: 4mm), 90deg, symbol: "straight", stroke: blue, scale: 0.75)
|
||||
translate((0, -2mm))
|
||||
mark((angle: 0deg, radius: 4mm), 270deg, symbol: "straight", stroke: blue, scale: 0.75)
|
||||
})
|
||||
])
|
||||
]
|
||||
|
||||
// Quell Wandlung
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Ein-Tor]
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
column-gutter: 3mm,
|
||||
zap.circuit({
|
||||
import zap: *
|
||||
registerAllCustom();
|
||||
einTor("F1", (0,0), (2,0), i: (content: $i_(cal(F),1)$, anchor: "south-east", label-distance: -10pt),
|
||||
u: $u_1$
|
||||
)
|
||||
einTor("F1", (0,0), (2,0), i: (content: $i_(cal(F),2)$, anchor: "west", label-distance: -10pt, invert: true))
|
||||
}),
|
||||
[
|
||||
Tor-Bedinung:\
|
||||
$i_(cal(F),2) = i_(cal(F),1)$
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
|
||||
// Quell Wandlung
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Quelle Wandlung]
|
||||
|
||||
#zap.circuit({
|
||||
import zap: *
|
||||
set-style(scale: (x: 0.75, y:0.75), fill: none)
|
||||
resistor("R1", (-2, 0), (0, 0))
|
||||
vsource("V1", (-2, 0), (-2, -2))
|
||||
wire((-2, -2), (0, -2))
|
||||
node("n1", (0, 0), label: "1")
|
||||
node("n2", (0, -2), label: "2")
|
||||
})
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
align: center,
|
||||
scale(x: 65%, y: 65%,
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
import cetz.draw : line, content
|
||||
|
||||
vsource("U0", (0, 1.5), (0, -1.5), fill: none)
|
||||
|
||||
node("n2", (3.5,1.5), fill: false)
|
||||
node("n3", (3.5,-1.5), fill: false)
|
||||
|
||||
resistor("R0", "U0.in", "n2", fill: none, label: (content: $R_i$, anchor: "south", distance: 0.1))
|
||||
wire("U0.out", "n3")
|
||||
|
||||
wire((2.49,1.5), "n2", i: (content: $i$, anchor: "south", invert: true))
|
||||
|
||||
set-style(mark: (end: ">", fill: black))
|
||||
line((3.5, 1.2), (3.5, -1.2), stroke: 0.5pt)
|
||||
content((3.9, 0), $u$)
|
||||
|
||||
line((0.7, 0.5), (0.7, -0.5), stroke: 0.5pt)
|
||||
content((1.7, 0), $U_0 = I_0 / G_i$)
|
||||
})),
|
||||
scale(x: 65%, y: 65%,
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
import cetz.draw : line, content
|
||||
|
||||
isource("I0", (0, 1.5), (0, -1.5), fill: none)
|
||||
node("n0", (2,1.5))
|
||||
node("n1", (2,-1.5))
|
||||
|
||||
node("n2", (3.5,1.5), fill: false)
|
||||
node("n3", (3.5,-1.5), fill: false)
|
||||
|
||||
resistor("g0", "n1", "n0", fill: none, label: (content: $G_i$, anchor: "south", distance: 0.2))
|
||||
wire("I0.in", "n0", "n2")
|
||||
wire("I0.out", "n1", "n3")
|
||||
wire("n0", "n2", i: (content: $i$, anchor: "south", invert: true))
|
||||
wire((0,0.6), "I0.in", i: (content: $I_0 = U_0 / R_i$, anchor: "east", invert: false, distance: 0.2))
|
||||
|
||||
set-style(mark: (end: ">", fill: black))
|
||||
line((3.5, 1.2), (3.5, -1.2), stroke: 0.5pt)
|
||||
content((3.9, 0), $u$)
|
||||
})),
|
||||
[
|
||||
$U_0 = I_0 R_i$
|
||||
|
||||
$R_i=1/G_i$
|
||||
|
||||
$r(i) = R_i i + U_0$
|
||||
],
|
||||
[
|
||||
$I_0 = U_0 G_i$
|
||||
|
||||
$G_i=1/R_i$
|
||||
|
||||
$g(u) = G_i u + I_0$
|
||||
]
|
||||
);
|
||||
]
|
||||
// Bauelemente
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Bauelemente]
|
||||
#table(
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
table.header([*Zeichen*],[*Gleichung*], [*Abbildung*]),
|
||||
|
||||
scale(x: 100%, y: 100%,
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
import cetz.draw : line, content
|
||||
diode("b1", (0, 0), (1., 0))
|
||||
})),
|
||||
|
||||
);
|
||||
|
||||
|
||||
]
|
||||
|
||||
// Graphen und Matrizen
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Graphen und Matrizen]
|
||||
|
||||
@@ -65,7 +226,7 @@
|
||||
|
||||
Knotenzidenzmatrix $bold(A)$
|
||||
|
||||
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
|
||||
$bold(A) : bold(i_k) -> text("Knotenstrombilanz") = 0$ \
|
||||
$bold(A^T) : bold(u_b)-> bold(u_k)$
|
||||
$
|
||||
bold(A) = quad mannot.mark(mat(
|
||||
@@ -80,6 +241,9 @@
|
||||
|
||||
a in {-1, 0, 1}
|
||||
$
|
||||
|
||||
$-1$: In Knoten rein \
|
||||
$1$: Aus Knoten raus \
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
@@ -103,6 +267,9 @@
|
||||
b in {-1, 0, 1}
|
||||
$
|
||||
|
||||
$-1$: Gegen Maschenrichtung
|
||||
$1$: In Maschenrichtung
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
*KCL und KVL* \
|
||||
@@ -118,43 +285,570 @@
|
||||
$bold(u_b^T i_b) = 0$
|
||||
]
|
||||
|
||||
// Baumkonzept
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
|
||||
KCLs: $n-1$\
|
||||
KVLs: $b-(n-1)$
|
||||
|
||||
Baum einzeichnen (Keine Schleifen!)
|
||||
]
|
||||
|
||||
// Tablauematrix
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Tablauematrix]
|
||||
]
|
||||
// Machenstrom-/Knotenpotenzial-Analyse
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Machenstrom-/Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
// Reduziert Knotenpotenzial
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
// ZweiTor Verschaltung
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Zweitor Verschaltung]
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
gutter: 5mm,
|
||||
[
|
||||
Parallel-Parallel \
|
||||
$jMat(G)_"ges" = jMat(G_1) + jMat(G_2)$
|
||||
],
|
||||
[
|
||||
#zap.circuit({
|
||||
import zap : *
|
||||
|
||||
registerAllCustom();
|
||||
zweiTor("G1", (0,-6mm), $jMat(G_1)$)
|
||||
zweiTor("G2", (0,6mm), $jMat(G_2)$)
|
||||
|
||||
zwire("G1.in1", (-8mm, -3.5mm), (-8mm, 8.5mm), "G2.in1")
|
||||
zwire("G1.in0", (-10mm, -8.5mm), (-10mm, 3.5mm), "G2.in0")
|
||||
node("n0", (13mm, 8.5mm), fill: false)
|
||||
node("n1", (13mm, -8.5mm), fill: false)
|
||||
node("n00", (10mm, 8.5mm))
|
||||
node("n11", (8mm, -8.5mm))
|
||||
wire("n0", "n00")
|
||||
wire("n1", "n11")
|
||||
|
||||
zwire("G1.out1", (10mm, -3.5mm), (10mm, 8.5mm), "G2.out1")
|
||||
zwire("G1.out0", (8mm, -8.5mm), (8mm, 3.5mm), "G2.out0")
|
||||
node("n2", (-13mm, 8.5mm), fill: false)
|
||||
node("n3", (-13mm, -8.5mm), fill: false)
|
||||
node("n22", (-8mm, 8.5mm))
|
||||
node("n33", (-10mm, -8.5mm))
|
||||
wire("n2", "n22")
|
||||
wire("n3", "n33")
|
||||
})
|
||||
],
|
||||
[
|
||||
Seriel-Seriel \
|
||||
$jMat(G)_"ges" = jMat(G_1) + jMat(G_2)$
|
||||
],
|
||||
[
|
||||
#zap.circuit({
|
||||
import zap : *
|
||||
|
||||
registerAllCustom();
|
||||
zweiTor("G1", (0,-6mm), $jMat(R_1)$)
|
||||
zweiTor("G2", (0,6mm), $jMat(R_2)$)
|
||||
|
||||
node("n0", (13mm, 8.5mm), fill: false)
|
||||
node("n1", (13mm, -8.5mm), fill: false)
|
||||
|
||||
node("n2", (-13mm, 8.5mm), fill: false)
|
||||
node("n3", (-13mm, -8.5mm), fill: false)
|
||||
|
||||
zwire("G1.in1", (-8mm, -3.5mm), (-8mm, 3.5mm), "G2.in0")
|
||||
zwire("G1.out1", (8mm, -3.5mm), (8mm, 3.5mm), "G2.out0")
|
||||
|
||||
zwire("G1.in0", "n3")
|
||||
zwire("G1.out0", "n1")
|
||||
zwire("G2.out1", "n0")
|
||||
zwire("G2.in1", "n2")
|
||||
})
|
||||
],
|
||||
[
|
||||
Seriel-Parallel \
|
||||
$jMat(H)_"ges" = jMat(H_1) + jMat(H_2)$
|
||||
],
|
||||
[
|
||||
#zap.circuit({
|
||||
import zap : *
|
||||
|
||||
registerAllCustom();
|
||||
zweiTor("G1", (0,-6mm), $jMat(H_1)$)
|
||||
zweiTor("G2", (0,6mm), $jMat(H_2)$)
|
||||
|
||||
node("n0", (13mm, 8.5mm), fill: false)
|
||||
node("n1", (13mm, -8.5mm), fill: false)
|
||||
|
||||
node("n2", (-13mm, 8.5mm), fill: false)
|
||||
node("n3", (-13mm, -8.5mm), fill: false)
|
||||
|
||||
zwire("G1.in1", (-8mm, -3.5mm), (-8mm, 3.5mm), "G2.in0")
|
||||
|
||||
zwire("G1.in0", "n3")
|
||||
zwire("G2.in1", "n2")
|
||||
|
||||
zwire("G1.out1", (10mm, -3.5mm), (10mm, 8.5mm), "G2.out1")
|
||||
zwire("G1.out0", (8mm, -8.5mm), (8mm, 3.5mm), "G2.out0")
|
||||
node("n00", (10mm, 8.5mm))
|
||||
node("n11", (8mm, -8.5mm))
|
||||
wire("n0", "n00")
|
||||
wire("n1", "n11")
|
||||
})
|
||||
],
|
||||
[
|
||||
Parallel-Seriel \
|
||||
$jMat(H')_"ges" = jMat(H'_1) + jMat(H'_2)$
|
||||
],
|
||||
[
|
||||
#zap.circuit({
|
||||
import zap : *
|
||||
|
||||
registerAllCustom();
|
||||
zweiTor("G1", (0,-6mm), $jMat(H'_1)$)
|
||||
zweiTor("G2", (0,6mm), $jMat(H'_2)$)
|
||||
|
||||
node("n0", (13mm, 8.5mm), fill: false)
|
||||
node("n1", (13mm, -8.5mm), fill: false)
|
||||
|
||||
node("n2", (-13mm, 8.5mm), fill: false)
|
||||
node("n3", (-13mm, -8.5mm), fill: false)
|
||||
|
||||
zwire("G1.out1", (8mm, -3.5mm), (8mm, 3.5mm), "G2.out0")
|
||||
|
||||
zwire("G1.out0", "n1")
|
||||
zwire("G2.out1", "n0")
|
||||
|
||||
zwire("G1.in1", (-8mm, -3.5mm), (-8mm, 8.5mm), "G2.in1")
|
||||
zwire("G1.in0", (-10mm, -8.5mm), (-10mm, 3.5mm), "G2.in0")
|
||||
node("n22", (-8mm, 8.5mm))
|
||||
node("n33", (-10mm, -8.5mm))
|
||||
wire("n2", "n22")
|
||||
wire("n3", "n33")
|
||||
})
|
||||
],
|
||||
[
|
||||
Kette normal \
|
||||
$jMat(A)_"ges" = jMat(A_1) dot jMat(A_2)$
|
||||
],
|
||||
[
|
||||
#zap.circuit({
|
||||
import zap : *
|
||||
|
||||
registerAllCustom();
|
||||
zweiTor("A2", (6mm, 0), $jMat(A_2)$, height: 8mm, width: 8mm)
|
||||
zweiTor("A1", (-6mm, 0), $jMat(A_1)$, height: 8mm, width: 8mm)
|
||||
|
||||
node("n0", (-13mm, 2mm), fill: false)
|
||||
node("n1", (-13mm, -2mm), fill: false)
|
||||
node("n2", (13mm, 2mm), fill: false)
|
||||
node("n3", (13mm, -2mm), fill: false)
|
||||
|
||||
wire((-13mm, 2mm), "A1.in1")
|
||||
wire((-13mm, -2mm), "A1.in0")
|
||||
wire((13mm, 2mm), "A2.out1")
|
||||
wire((13mm, -2mm), "A2.out0")
|
||||
wire("A2.in1", "A1.out1")
|
||||
wire("A2.in0", "A1.out0")
|
||||
})
|
||||
],
|
||||
[
|
||||
Kette invers \
|
||||
$jMat(A')_"ges" = jMat(A'_2) dot jMat(A'_1)$
|
||||
],
|
||||
[
|
||||
#zap.circuit({
|
||||
import zap : *
|
||||
|
||||
registerAllCustom();
|
||||
zweiTor("A2", (6mm, 0), $jMat(A'_2)$, height: 8mm, width: 8mm)
|
||||
zweiTor("A1", (-6mm, 0), $jMat(A'_1)$, height: 8mm, width: 8mm)
|
||||
|
||||
node("n0", (-13mm, 2mm), fill: false)
|
||||
node("n1", (-13mm, -2mm), fill: false)
|
||||
node("n2", (13mm, 2mm), fill: false)
|
||||
node("n3", (13mm, -2mm), fill: false)
|
||||
|
||||
wire((-13mm, 2mm), "A1.in1")
|
||||
wire((-13mm, -2mm), "A1.in0")
|
||||
wire((13mm, 2mm), "A2.out1")
|
||||
wire((13mm, -2mm), "A2.out0")
|
||||
wire("A2.in1", "A1.out1")
|
||||
wire("A2.in0", "A1.out0")
|
||||
})
|
||||
]
|
||||
)
|
||||
],
|
||||
|
||||
// Linearsierung
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Linearisierung (Ein-Tore)]
|
||||
|
||||
1. Arbeitspunkt bestimmen \ $"AP" =(u_"AP", i_"AP")$
|
||||
|
||||
2. Ableitung $g_cal(F)(u)$/$r_cal(F)(i)$ bilden \ $g'_cal(F)(u)$/$r'_cal(F)(i)$
|
||||
|
||||
*Stromgesteuert $r(i) = u$*
|
||||
|
||||
Groß-Signal:
|
||||
|
||||
$i_"lin" = g_"lin" (u) = g'_cal(F)(u_"AP")(u-u_"AP") + i_"AP" = \
|
||||
g'_cal(F)(u_"AP")u - g'_cal(F)(u_"AP")u_"AP" + i_"AP"
|
||||
$
|
||||
|
||||
$I_0 = i_"AP" - g'_cal(F)(u_"AP")u_"AP"$
|
||||
|
||||
$g_0 = g'_cal(F)(u_"AP")u$
|
||||
|
||||
#block(
|
||||
height: 20mm,
|
||||
scale(x: 75%, y: 75%,
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
import cetz.draw : line, content
|
||||
|
||||
isource("I0", (0, 1.5), (0, -1.5), fill: none)
|
||||
node("n0", (2,1.5))
|
||||
node("n1", (2,-1.5))
|
||||
|
||||
node("n2", (3.5,1.5), fill: false)
|
||||
node("n3", (3.5,-1.5), fill: false)
|
||||
|
||||
resistor("g0", "n1", "n0", fill: none, label: (content: $g_0$, anchor: "south", distance: 0.2))
|
||||
wire("I0.in", "n0", "n2")
|
||||
wire("I0.out", "n1", "n3")
|
||||
wire("n0", "n2", i: (content: $i_"lin"$, anchor: "south", invert: true))
|
||||
wire((0,0.6), "I0.in", i: (content: $I_0$, anchor: "east", invert: true))
|
||||
|
||||
set-style(mark: (end: ">", fill: black))
|
||||
line((3.5, 1.2), (3.5, -1.2), stroke: 0.5pt)
|
||||
content((3.9, 0), $u$)
|
||||
})
|
||||
));
|
||||
|
||||
#linebreak()
|
||||
|
||||
Klein-Signal:$i_"lin" = g_"lin" (u) = g'(u_"AP")u$
|
||||
|
||||
*Spannungsgesteuert $g(u) = i$*
|
||||
|
||||
$u_"lin" = r_"lin" (i) = r'(i_"AP")(i-i_"AP") + u_"AP"$
|
||||
|
||||
$U_0 = u_"AP" - r'(i_"AP") i_"AP"$
|
||||
|
||||
#block(
|
||||
height: 25mm,
|
||||
scale(x: 75%, y: 75%,
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
import cetz.draw : line, content
|
||||
|
||||
vsource("U0", (0, 1.5), (0, -1.5), fill: none)
|
||||
|
||||
node("n2", (3.5,1.5), fill: false)
|
||||
node("n3", (3.5,-1.5), fill: false)
|
||||
|
||||
resistor("R0", "U0.in", "n2", fill: none, label: (content: $r_0$, anchor: "south", distance: 0.1))
|
||||
wire("U0.out", "n3")
|
||||
|
||||
wire((2.49,1.5), "n2", i: (content: $i$, anchor: "south", invert: true))
|
||||
|
||||
set-style(mark: (end: ">", fill: black))
|
||||
line((3.5, 1.2), (3.5, -1.2), stroke: 0.5pt)
|
||||
content((3.9, 0), $u_"lin"$)
|
||||
|
||||
line((0.7, 0.5), (0.7, -0.5), stroke: 0.5pt)
|
||||
content((1.2, 0), $U_0$)
|
||||
})
|
||||
));
|
||||
Klein-Signal: $u_"lin" = r_"lin" (i) = r'(i_"AP")i$
|
||||
]
|
||||
#colbreak()
|
||||
|
||||
// Linearsierung (N-Tore)
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Linearisierung (N-Tore)]
|
||||
|
||||
1. Arbeitspunk bestimmen $vec(jVec(u)_"AP", jVec(i)_"AP") hat(=) vec(jVec(x)_"AP", jVec(y)_"AP")$
|
||||
|
||||
$f_1(x_1, x_2, ... x_n) &= y_1\
|
||||
f_2(x_1, x_2, ... x_n) &= y_2\
|
||||
&dots.v \
|
||||
f_n (x_1, x_2, ... x_n) &= y_n
|
||||
$
|
||||
|
||||
$bold(f)(jVec(x))=jVec(y)$
|
||||
|
||||
2. Ableitung: Jacobi-Matrix
|
||||
|
||||
$jMat(J) = mat(
|
||||
#mannot.mark($delta y_1$, color: red)/(#mannot.mark($delta x_1$, color: red)), #mannot.mark($delta y_1$, color: red)/(#mannot.mark($delta x_2$, color: purple)), ..., #mannot.mark($delta y_1$, color: red)/(#mannot.mark($delta x_n$, color: blue));
|
||||
#mannot.mark($delta y_2$, color: purple)/(#mannot.mark($delta x_1$, color: red)), #mannot.mark($delta y_2$, color: purple)/(#mannot.mark($delta x_2$, color: purple)), ..., #mannot.mark($delta y_2$, color: purple)/(#mannot.mark($delta x_n$, color: blue));
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
#mannot.mark($delta y_n$, color: blue)/(#mannot.mark($delta x_1$, color: red)), #mannot.mark($delta y_n$, color: blue)/(#mannot.mark($delta x_2$, color: purple)), ..., #mannot.mark($delta y_n$, color: blue)/(#mannot.mark($delta x_n$, color: blue));
|
||||
)$
|
||||
|
||||
*Großsignal Beschreibung:* \
|
||||
$jVec(y)_"lin" = jMat(J)|_(jVec(x)_"AP") (jVec(x)_"lin" - jVec(x)_"AP") + jVec(y)_"AP"$
|
||||
|
||||
*Kleinsingal Beschreibung:* \
|
||||
$jVec(y)_"lin" = jMat(J)|_(jVec(x)_"AP") jVec(x)_"lin"$
|
||||
]
|
||||
|
||||
// Newton-Raphson
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Newton-Raphson (Eine-Tor)]
|
||||
$x_(n+1) = x_n - f(x_n)/(f'(x_n))$
|
||||
]
|
||||
|
||||
// Netwen-Raphson N-Tore
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Newton-Raphson (N-Tore)]
|
||||
Nicht lineare Beschreibung in Nullraum/Impliziter Darstellung:
|
||||
$f(jVec(x)) = jVec(0)$\
|
||||
|
||||
$jVec(x)_(n+1) = jVec(x)_n - (jMat(J)|_(jVec(x)_"AP"))^(-1) f(jVec(x))$
|
||||
]
|
||||
|
||||
|
||||
// Reaktive Elemeten
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[Reaktive Element]
|
||||
|
||||
*$forall$ Bauelemente*\
|
||||
|
||||
#grid(columns: (1fr, 0pt, 1fr),
|
||||
row-gutter: 3mm,
|
||||
column-gutter: 2mm,
|
||||
[
|
||||
$[i(t)] = unit("A")$\
|
||||
$[q(t)] = unit("A s") = unit("C")$\
|
||||
],
|
||||
grid.vline(stroke: 0.75pt),
|
||||
[],
|
||||
[
|
||||
$[u(t)] = unit("V")$ \
|
||||
$[Phi(t)] = unit("A s") = unit("W b") $ \
|
||||
],
|
||||
|
||||
|
||||
[
|
||||
$q(t) = integral_(-infinity)^(t) i(tau) d tau = \
|
||||
q(t_0) + integral_(0)^(t) i(tau) d tau
|
||||
$ \
|
||||
|
||||
$i(t) = dot(q(t))$
|
||||
],
|
||||
[],
|
||||
[
|
||||
$Phi(t) = integral_(-infinity)^(t) u(tau) d tau = \
|
||||
Phi(t_0) + integral_(0)^(t) u(tau) d tau
|
||||
$ \
|
||||
|
||||
$u(t) = dot(Phi(t))$
|
||||
])
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[Reaktive Bauelemente]
|
||||
#grid(columns: (1fr, 0pt, 1fr),
|
||||
row-gutter: 3mm,
|
||||
column-gutter: 2mm,
|
||||
[
|
||||
*Induktiv*
|
||||
],
|
||||
grid.vline(stroke: 0.75pt),
|
||||
[],
|
||||
[
|
||||
*Kapazitiv*
|
||||
],
|
||||
[
|
||||
$q = c(u) \ chi(q) = u$\
|
||||
],
|
||||
[],
|
||||
[
|
||||
$Phi = l(i) \ i = lambda(Phi)$
|
||||
],
|
||||
|
||||
grid.cell(colspan: 3, inset: 2mm)[#align(center, [*Lineare Bauelemente*])],
|
||||
|
||||
[
|
||||
$q(t) = C dot u(t)$\
|
||||
$[C] = F = unit("C / V")$
|
||||
],
|
||||
[],
|
||||
[
|
||||
$Phi(t) = L dot i(t)$\
|
||||
$[L] = H = unit("Wb / A")$
|
||||
]
|
||||
)
|
||||
]
|
||||
|
||||
// Reaktive Dual Wandlung
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[Reaktive Dualwandlung]
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
row-gutter: 4mm,
|
||||
$u --> R_d i^d$, $i --> u^d/R_d$,
|
||||
$q --> Phi^d / R_d$, $Phi --> q^d R_d$
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complex Zahlen]
|
||||
|
||||
]
|
||||
|
||||
// Complex AC
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung]
|
||||
Im Eingeschwungenem Zustand
|
||||
|
||||
$u(t) = U_m cos(omega t + alpha)$ \
|
||||
$i(t) = I_m cos(omega t + beta)$
|
||||
|
||||
$(d u)/(d t) = A_m$
|
||||
|
||||
Kreisfrequenz: $omega = 2 pi f$ \
|
||||
Amplitude: $A_m$ \
|
||||
Phaseverschieben: $alpha$
|
||||
|
||||
*Ohm:* $u(t) = R I_m cos(omega t + beta) = omega A_m cos(omega)$)
|
||||
|
||||
*Serienschaltung*\
|
||||
$u_1(t) = U_1 cos(omega t)$\
|
||||
$u_2(t) = U_2 cos(omega t + phi)$
|
||||
|
||||
$u(t)_"ges" = u_1(t) + u_2(t) = \
|
||||
U_"ges"^2 = U_1^2 + 2 U_1 U_2 + U_2^2 \
|
||||
tan(phi) = (U_2 sin(phi))/(U_1 + U_2 cos(phi))
|
||||
$
|
||||
|
||||
**
|
||||
|
||||
]
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
// Tor Eigenschaften
|
||||
#place(
|
||||
bottom, float: true, scope: "parent",
|
||||
bgBlock(fill: colorEigenschaften, width: 100%)[
|
||||
#subHeading(fill: colorEigenschaften)[Tor Eigenschaften]
|
||||
|
||||
#table(
|
||||
columns: (auto, auto, auto, auto),
|
||||
inset: 2mm,
|
||||
align: horizon,
|
||||
table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Complex AC*]),
|
||||
[*passiv*\ ($not$aktiv)],
|
||||
[$forall (u,i) in cal(F): u dot i >= 0$],
|
||||
[
|
||||
$jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\
|
||||
$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) >=0$
|
||||
],
|
||||
[],
|
||||
|
||||
[*verlustlos*],
|
||||
[$forall (u,i) in cal(F): u dot i = 0$],
|
||||
[$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$],
|
||||
[],
|
||||
|
||||
|
||||
[*linear*],
|
||||
[Kennline ist Gerade],
|
||||
[
|
||||
Darstellbar: Matrix $+$ Aufpunkt\
|
||||
$lambda_1 vec(jVec(u)_1, jVec(i)_1) + lambda_2 vec(jVec(u)_2, jVec(i)_2) in cal(F)$
|
||||
],
|
||||
[],
|
||||
|
||||
[*quellenfrei*],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
|
||||
[*streng linear*],
|
||||
[linear UND quellenfrei],
|
||||
[linear UND quellenfrei\ Darstellbar: Nur Matrix],
|
||||
[],
|
||||
|
||||
|
||||
[*ungepolt* \ (Punkt sym.)],
|
||||
[$(u,i) in cal(F) <=> (-u, -i) in cal(F)$],
|
||||
[
|
||||
N/A
|
||||
],
|
||||
[],
|
||||
|
||||
[*symetrisch*\ $<=>$ Umkehrbar],
|
||||
[N/A],
|
||||
[
|
||||
$jMat(A) = jMat(A')$\
|
||||
$jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0)$
|
||||
],
|
||||
[],
|
||||
|
||||
[*Reziprok*],
|
||||
[Immer Reziprok],
|
||||
[
|
||||
$cal(F)$ symetrisch $=> cal(F)$ reziprok
|
||||
|
||||
$jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \
|
||||
jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$],
|
||||
[],
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#show table.cell: it => pad(),
|
||||
#set text(size: 10pt)
|
||||
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#table(
|
||||
columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
[In $->$], $bold(R)$, $bold(G)$, $bold(H)$, $bold(H')$, $bold(A)$, $bold(A')$,
|
||||
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
table.cell(
|
||||
inset: 0mm,
|
||||
[
|
||||
#cetz.canvas(length: 12mm,{
|
||||
import cetz.draw : *
|
||||
line((1,0), (0,1))
|
||||
content((0.309, 0.25), "Out")
|
||||
content((0.75, 0.75), "In")
|
||||
})
|
||||
]),
|
||||
$bold(R)$,
|
||||
$bold(G)$,
|
||||
$bold(H)$,
|
||||
$bold(H')$,
|
||||
$bold(A)$,
|
||||
$bold(A')$,
|
||||
|
||||
$bold(R)$,
|
||||
$mat(r_11, r_12; r_21, r_22)$,
|
||||
$1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
||||
$jMat(G^(-1) =) 1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
||||
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
||||
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
||||
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
||||
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
||||
|
||||
$bold(G)$,
|
||||
$1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
||||
$jMat(R^(-1) =) 1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
||||
$mat(g_11, g_12; g_21, g_22)$,
|
||||
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
||||
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
||||
@@ -165,14 +859,14 @@
|
||||
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
||||
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
||||
$mat(h_11, h_12; h_21, h_22)$,
|
||||
$1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
||||
$jMat(H')^(-1)= 1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
||||
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
||||
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
||||
|
||||
$bold(H')$,
|
||||
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
||||
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
||||
$1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
||||
$jMat(H^(-1))= 1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
||||
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
||||
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
||||
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
||||
@@ -183,16 +877,33 @@
|
||||
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
||||
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
||||
$mat(a_11, a_12; a_21, a_22)$,
|
||||
$1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
||||
$jMat(A'^(-1))= 1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
||||
|
||||
$bold(A')$,
|
||||
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
||||
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
||||
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
||||
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
||||
$1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
||||
$jMat(A^(-1))= 1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
||||
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
||||
)
|
||||
|
||||
#table(
|
||||
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
[],
|
||||
$bold(R) jVec(i) = jVec(u)$,
|
||||
$bold(G) jVec(u) = jVec(i)$,
|
||||
$bold(H) vec(i_1, u_2) = vec(u_1, i_2)$,
|
||||
$bold(H') vec(u_1, i_2) = vec(i_1, u_2)$,
|
||||
$bold(A) vec(u_2, -i_2) = vec(i_1, u_1)$,
|
||||
$bold(A') vec(u_1, -i_1) = vec(i_2, u_2)$,
|
||||
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
86
src/lib/circuit.typ
Normal file
86
src/lib/circuit.typ
Normal file
@@ -0,0 +1,86 @@
|
||||
#import "@preview/cetz:0.4.2" as cetz
|
||||
#import "@preview/zap:0.5.0" as zap
|
||||
#import zap: interface
|
||||
|
||||
#let registerAllCustom() = {
|
||||
cetz.draw.set-ctx(ctx => {
|
||||
ctx.zap.style.insert("einTor", (
|
||||
scale: auto,
|
||||
fill: auto,
|
||||
height: 3mm,
|
||||
width: 6mm,
|
||||
))
|
||||
ctx
|
||||
})
|
||||
|
||||
cetz.draw.set-ctx(ctx => {
|
||||
ctx.zap.style.insert("zweiTor", (
|
||||
scale: auto,
|
||||
fill: none,
|
||||
height: 10mm,
|
||||
width: 10mm,
|
||||
))
|
||||
ctx
|
||||
})
|
||||
}
|
||||
|
||||
#let einTor(name, node, flip: false, ..params) = {
|
||||
import cetz.draw: rect
|
||||
import zap: component
|
||||
|
||||
|
||||
// Drawing function
|
||||
let draw(ctx, position, style) = {
|
||||
rect(
|
||||
(-style.width/2, -style.height/2),
|
||||
(style.width/2, style.height/2),
|
||||
fill: style.fill
|
||||
)
|
||||
|
||||
if(flip) {
|
||||
rect(
|
||||
((style.width*0.7)/2, -(style.height)/2),
|
||||
(style.width/2, style.height/2),
|
||||
fill: black
|
||||
)
|
||||
} else {
|
||||
rect(
|
||||
(-(style.width)/2, -style.height/2),
|
||||
(-(style.width*0.6)/2, style.height/2),
|
||||
fill: black
|
||||
)
|
||||
}
|
||||
|
||||
interface((-style.width / 2, -style.height / 2), (style.width / 2, style.height / 2), io: position.len() < 2)
|
||||
}
|
||||
|
||||
// Component call
|
||||
component("einTor", name, node, draw: draw, ..params)
|
||||
}
|
||||
|
||||
#let zweiTor(name, node, label, ..params) = {
|
||||
import cetz.draw: rect, anchor, content
|
||||
import zap: component
|
||||
|
||||
|
||||
// Drawing function
|
||||
let draw(ctx, position, style) = {
|
||||
rect(
|
||||
(-style.width/2, -style.height/2),
|
||||
(style.width/2, style.height/2),
|
||||
fill: style.fill
|
||||
)
|
||||
|
||||
content((0,0), label)
|
||||
|
||||
anchor("in0", (-style.width/2, -style.height*0.5/2))
|
||||
anchor("in1", (-style.width/2, style.height*0.5/2))
|
||||
anchor("out0", (style.width/2, -style.height*0.5/2))
|
||||
anchor("out1", (style.width/2, style.height*0.5/2))
|
||||
|
||||
interface((-style.width / 2, -style.height / 2), (style.width / 2, style.height / 2), io: false)
|
||||
}
|
||||
|
||||
// Component call
|
||||
component("zweiTor", name, node, draw: draw, ..params)
|
||||
}
|
||||
@@ -1,4 +1,4 @@
|
||||
#let bgBlock(body, fill: color) = block(body, fill:fill.lighten(80%), width: 100%, inset: (bottom: 2mm))
|
||||
#let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm))
|
||||
|
||||
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||
#let MathAlignLeft(e) = {
|
||||
@@ -11,8 +11,8 @@
|
||||
top+center,
|
||||
text(
|
||||
body,
|
||||
size: 10pt,
|
||||
weight: "regular",
|
||||
size: 8pt,
|
||||
weight: "bold",
|
||||
style: "italic",
|
||||
)
|
||||
),
|
||||
@@ -30,15 +30,21 @@
|
||||
#let sinTable = [
|
||||
#let data = json("../sintable.json")
|
||||
#table(
|
||||
columns: data.at("x").len() + 1,
|
||||
columns: data.len(),
|
||||
rows: data.keys().len(),
|
||||
stroke: none,
|
||||
table.hline(stroke: (thickness: 0.3mm)),
|
||||
fill: (x, y) => if (calc.rem(y, 2) == 0) { color.lighten(gray, 50%) } else { white },
|
||||
..for (label) in data.keys() {
|
||||
([*#eval(label, mode: "math")*], table.hline(stroke: (thickness: 0.3mm)), )
|
||||
for i in data.at(label) {
|
||||
(eval(i, mode: "math"),)
|
||||
|
||||
..for (label) in data.keys() {
|
||||
([*#eval(label, mode: "math")*], )
|
||||
},
|
||||
|
||||
table.hline(stroke: (thickness: 0.3mm)),
|
||||
|
||||
..for (i, v) in data.at("x").enumerate() {
|
||||
for (col) in data.keys() {
|
||||
(eval(data.at(col).at(i), mode: "math"),)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user