Started Newton Raphson
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 21s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 21s
This commit is contained in:
@@ -541,19 +541,48 @@
|
||||
));
|
||||
Klein-Signal: $u_"lin" = r_"lin" (i) = r'(i_"AP")i$
|
||||
]
|
||||
#colbreak()
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Linearisierung (N-Tore)]
|
||||
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Linearisierung (Zweite-Tore)]
|
||||
1. Arbeitspunk bestimmen $vec(jVec(u)_"AP", jVec(i)_"AP") hat(=) vec(jVec(x)_"AP", jVec(y)_"AP")$
|
||||
|
||||
1. Arbeitspunk bestimmen $vec(jVec(u)_"AP", jVec(i)_"AP")$
|
||||
$f_1(x_1, x_2, ... x_n) &= y_1\
|
||||
f_2(x_1, x_2, ... x_n) &= y_2\
|
||||
&dots.v \
|
||||
f_n (x_1, x_2, ... x_n) &= y_n
|
||||
$
|
||||
|
||||
2. Ableitung
|
||||
$bold(f)(jVec(x))=jVec(y)$
|
||||
|
||||
2. Ableitung: Jacobi-Matrix
|
||||
|
||||
$jMat(J) = mat(
|
||||
#mannot.mark($delta y_1$, color: red)/(#mannot.mark($delta x_1$, color: red)), #mannot.mark($delta y_1$, color: red)/(#mannot.mark($delta x_2$, color: purple)), ..., #mannot.mark($delta y_1$, color: red)/(#mannot.mark($delta x_n$, color: blue));
|
||||
#mannot.mark($delta y_2$, color: purple)/(#mannot.mark($delta x_1$, color: red)), #mannot.mark($delta y_2$, color: purple)/(#mannot.mark($delta x_2$, color: purple)), ..., #mannot.mark($delta y_2$, color: purple)/(#mannot.mark($delta x_n$, color: blue));
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
#mannot.mark($delta y_n$, color: blue)/(#mannot.mark($delta x_1$, color: red)), #mannot.mark($delta y_n$, color: blue)/(#mannot.mark($delta x_2$, color: purple)), ..., #mannot.mark($delta y_n$, color: blue)/(#mannot.mark($delta x_n$, color: blue));
|
||||
)$
|
||||
|
||||
*Großsignal Beschreibung:* \
|
||||
$jVec(y)_"lin" = jMat(J)|_(jVec(x)_"AP") (jVec(x)_"lin" - jVec(x)_"AP") + jVec(y)_"AP"$
|
||||
|
||||
*Kleinsingal Beschreibung:* \
|
||||
$jVec(y)_"lin" = jMat(J)|_(jVec(x)_"AP") jVec(x)_"lin"$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Newton-Raphson]
|
||||
#subHeading(fill: colorEineTore)[Newton-Raphson (Eine-Tor)]
|
||||
$x_(n+1) = x_n - f(x_n)/(f'(x_n))$
|
||||
]
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Newton-Raphson (Mehr-Tore)]
|
||||
Nicht lineare Beschreibung in Nullraum/Impliziter Darstellung:
|
||||
$f(jVec(x)) = jVec(0)$\
|
||||
|
||||
$jVec(x)_(n+1) = jVec(x)_n - (jMat(J)|_(jVec(x)_"AP"))^(-1) f(jVec(x))$
|
||||
]
|
||||
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
Reference in New Issue
Block a user