Added Color Boxes
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
This commit is contained in:
@@ -50,159 +50,177 @@
|
|||||||
#let colorAbleitung = color.hsl(356.92deg, 92.13%, 75.1%)
|
#let colorAbleitung = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||||
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||||
|
|
||||||
|
#let bgBlock(body, fill: color) = block(body, fill:fill.lighten(80%), width: 100%, inset: (bottom: 2mm))
|
||||||
|
|
||||||
#columns(4, gutter: 2mm)[
|
#columns(4, gutter: 2mm)[
|
||||||
#subHeading(fill: colorAllgemein, it: [Allgemeins])
|
#bgBlock(fill: colorAllgemein)[
|
||||||
#grid(
|
#subHeading(fill: colorAllgemein, it: [Allgemeins])
|
||||||
columns: (auto, auto),
|
#grid(
|
||||||
row-gutter: 2mm,
|
columns: (auto, auto),
|
||||||
column-gutter: 3mm,
|
row-gutter: 2mm,
|
||||||
[Dreiecksungleichung], [
|
column-gutter: 3mm,
|
||||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
[Dreiecksungleichung], [
|
||||||
$abs(abs(x) - abs(y)) <= abs(x - y)$
|
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||||
],
|
$abs(abs(x) - abs(y)) <= abs(x - y)$
|
||||||
[Cauchy-Schwarz-Ungleichung], [
|
],
|
||||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
[Cauchy-Schwarz-Ungleichung], [
|
||||||
],
|
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
||||||
[Geometrische Summenformel], [
|
],
|
||||||
#MathAlignLeft($ sum_(k=1)^(n) k = (n(n+1))/2 $)
|
[Geometrische Summenformel], [
|
||||||
],
|
#MathAlignLeft($ sum_(k=1)^(n) k = (n(n+1))/2 $)
|
||||||
[Bernoulli-Ungleichung ], [
|
],
|
||||||
|
[Bernoulli-Ungleichung ], [
|
||||||
|
$(1 + a)^n >= 1 + n a$
|
||||||
|
],
|
||||||
|
[Binomialkoeffizient], [
|
||||||
|
$binom(n, k) = (n!)/(k!(n-k)!)$
|
||||||
|
],
|
||||||
|
[Binomische Formel], [
|
||||||
|
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
|
||||||
|
],
|
||||||
|
[Fakultäten], [$ 0! = 1! = 1 $],
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorFolgen)[
|
||||||
|
#subHeading(fill: colorFolgen, it: [Folgen])
|
||||||
|
$ lim_(x -> infinity) a_n $
|
||||||
|
|
||||||
|
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
|
||||||
|
- Beweiße: durch Induktion
|
||||||
|
- Beweiße: Hat min. ein konvergent Teilefolge
|
||||||
|
- (Beweiße: Ungleichung $abs(a_n) <= k$)
|
||||||
|
|
||||||
|
*Monoton fallend/steigended*
|
||||||
|
- Beweise: Induktion
|
||||||
|
#grid(columns: (1fr, 1fr),
|
||||||
|
gutter: 1mm,
|
||||||
|
row-gutter: 2mm,
|
||||||
|
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
|
||||||
|
[$ a_(n+1) <= a_(n) $],
|
||||||
|
[$ a_(n+1) >= a_(n) $],
|
||||||
|
[$ a_(n+1)/a_(n) < 1 $],
|
||||||
|
[$ a_(n+1)/a_(n) > 1 $],
|
||||||
|
)
|
||||||
|
|
||||||
|
*Konvergentz Allgemein*
|
||||||
|
$ lim_(n -> infinity) a_n = a $
|
||||||
|
|
||||||
|
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \
|
||||||
|
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
|
||||||
|
- Divergent $-> infinity$: $a_n in [epsilon, infinity) $
|
||||||
|
- Divergent $-> infinity$: $a_n in (-infinity, epsilon) $
|
||||||
|
|
||||||
|
$space forall n > n_epsilon$
|
||||||
|
|
||||||
|
*Konvergentz Häufungspunkte*
|
||||||
|
- $a_n -> a <=>$ Alle Teilfolgen $-> a$
|
||||||
|
|
||||||
|
*Konvergenz Beweißen*
|
||||||
|
- Monoton UND Beschränkt $=>$ Konvergenz
|
||||||
|
NICHT Umgekehert
|
||||||
|
- (Cauchyfolge \
|
||||||
|
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
|
||||||
|
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||||
|
Cauchyfolge $=>$ Konvergenz)
|
||||||
|
- $a_n$ unbeschränkt $=>$ divergenz
|
||||||
|
|
||||||
|
*Konvergent Grenzwert finden*
|
||||||
|
- Von Bekannten Ausdrücken aufbauen
|
||||||
|
- Fixpunk Gleichung: $a = f(a)$ \
|
||||||
|
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
|
||||||
|
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
|
||||||
$(1 + a)^n >= 1 + n a$
|
$(1 + a)^n >= 1 + n a$
|
||||||
],
|
- Sandwitchtheorem:\
|
||||||
[Binomialkoeffizient], [
|
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
|
||||||
$binom(n, k) = (n!)/(k!(n-k)!)$
|
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
|
||||||
],
|
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||||
[Binomische Formel], [
|
- Zwerlegen in Konvergente Teil folgen \
|
||||||
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
|
(Vorallem bei $(-1)^n dot a_n$)
|
||||||
],
|
]
|
||||||
[Fakultäten], [$ 0! = 1! = 1 $],
|
|
||||||
)
|
|
||||||
|
|
||||||
|
#bgBlock(fill: colorFolgen)[
|
||||||
|
#subHeading(fill: colorFolgen, it: [Konvergent Folge Regeln])
|
||||||
|
#grid(
|
||||||
|
columns: (auto, auto),
|
||||||
|
align: bottom,
|
||||||
|
gutter: 2mm,
|
||||||
|
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
|
||||||
|
grid.cell(
|
||||||
|
rowspan: 2,
|
||||||
|
[$ lim_(n->infinity) (a_n / b_n) = a / b $ für ($b != 0$)],
|
||||||
|
),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
#subHeading(fill: colorFolgen, it: [Folgen])
|
#bgBlock(fill: colorFolgen)[
|
||||||
$ lim_(x -> infinity) a_n $
|
#subHeading(fill: colorFolgen, it: [Bekannte Folgen])
|
||||||
|
#grid(
|
||||||
|
columns: (auto, auto, auto),
|
||||||
|
column-gutter: 4mm,
|
||||||
|
row-gutter: 2mm,
|
||||||
|
align: bottom,
|
||||||
|
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||||
|
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
|
||||||
|
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
||||||
|
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
|
#bgBlock(fill: colorFolgen)[
|
||||||
- Beweiße: durch Induktion
|
#subHeading(fill: colorFolgen, it: [Teilfolgen])
|
||||||
- Beweiße: Hat min. ein konvergent Teilefolge
|
$ a_k subset a_n space (text("z.B") k= 2n + 1) $
|
||||||
- (Beweiße: Ungleichung $abs(a_n) <= k$)
|
- Index muss streng monoton steigen!
|
||||||
|
- Beschränkte $a_n => text("min eine konvergente") a_k$
|
||||||
|
- Konvergenz-Werte von $a_k$ sind Häufungspunkte
|
||||||
|
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
|
||||||
|
]
|
||||||
|
|
||||||
*Monoton fallend/steigended*
|
#bgBlock(fill: colorReihen)[
|
||||||
- Beweise: Induktion
|
#subHeading(fill: colorReihen, it: [Reihen])
|
||||||
#grid(columns: (1fr, 1fr),
|
]
|
||||||
gutter: 1mm,
|
|
||||||
row-gutter: 2mm,
|
|
||||||
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
|
|
||||||
[$ a_(n+1) <= a_(n) $],
|
|
||||||
[$ a_(n+1) >= a_(n) $],
|
|
||||||
[$ a_(n+1)/a_(n) < 1 $],
|
|
||||||
[$ a_(n+1)/a_(n) > 1 $],
|
|
||||||
)
|
|
||||||
|
|
||||||
*Konvergentz Allgemein*
|
#bgBlock(fill: colorReihen)[
|
||||||
$ lim_(n -> infinity) a_n = a $
|
#subHeading(fill: colorReihen, it: [Potenzreihen])
|
||||||
|
]
|
||||||
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \
|
|
||||||
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
|
|
||||||
- Divergent $-> infinity$: $a_n in [epsilon, infinity) $
|
|
||||||
- Divergent $-> infinity$: $a_n in (-infinity, epsilon) $
|
|
||||||
|
|
||||||
$space forall n > n_epsilon$
|
|
||||||
|
|
||||||
*Konvergentz Häufungspunkte*
|
|
||||||
- $a_n -> a <=>$ Alle Teilfolgen $-> a$
|
|
||||||
|
|
||||||
*Konvergenz Beweißen*
|
|
||||||
- Monoton UND Beschränkt $=>$ Konvergenz
|
|
||||||
NICHT Umgekehert
|
|
||||||
- (Cauchyfolge \
|
|
||||||
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
|
|
||||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
|
||||||
Cauchyfolge $=>$ Konvergenz)
|
|
||||||
- $a_n$ unbeschränkt $=>$ divergenz
|
|
||||||
|
|
||||||
*Konvergent Grenzwert finden*
|
|
||||||
- Von Bekannten Ausdrücken aufbauen
|
|
||||||
- Fixpunk Gleichung: $a = f(a)$ \
|
|
||||||
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
|
|
||||||
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
|
|
||||||
$(1 + a)^n >= 1 + n a$
|
|
||||||
- Sandwitchtheorem:\
|
|
||||||
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
|
|
||||||
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
|
|
||||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
|
||||||
- Zwerlegen in Konvergente Teil folgen \
|
|
||||||
(Vorallem bei $(-1)^n dot a_n$)
|
|
||||||
|
|
||||||
#subHeading(fill: colorFolgen, it: [Konvergent Folge Regeln])
|
|
||||||
#grid(
|
|
||||||
columns: (auto, auto),
|
|
||||||
align: bottom,
|
|
||||||
gutter: 2mm,
|
|
||||||
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
|
|
||||||
grid.cell(
|
|
||||||
rowspan: 2,
|
|
||||||
[$ lim_(n->infinity) (a_n / b_n) = a / b $ für ($b != 0$)],
|
|
||||||
),
|
|
||||||
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
|
|
||||||
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
|
|
||||||
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
|
||||||
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
|
||||||
)
|
|
||||||
|
|
||||||
#subHeading(fill: colorFolgen, it: [Bekannte Folgen])
|
|
||||||
#grid(
|
|
||||||
columns: (auto, auto, auto),
|
|
||||||
column-gutter: 4mm,
|
|
||||||
row-gutter: 2mm,
|
|
||||||
align: bottom,
|
|
||||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
|
||||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
|
||||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
|
||||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
|
|
||||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
|
||||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
|
||||||
)
|
|
||||||
|
|
||||||
#subHeading(fill: colorFolgen, it: [Teilfolgen])
|
|
||||||
$ a_k subset a_n space (text("z.B") k= 2n + 1) $
|
|
||||||
- Index muss streng monoton steigen!
|
|
||||||
- Beschränkte $a_n => text("min eine konvergente") a_k$
|
|
||||||
- Konvergenz-Werte von $a_k$ sind Häufungspunkte
|
|
||||||
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#subHeading(fill: colorReihen, it: [Reihen])
|
|
||||||
|
|
||||||
#subHeading(fill: colorReihen, it: [Potenzreihen])
|
|
||||||
|
|
||||||
#colbreak()
|
#colbreak()
|
||||||
#subHeading(fill: colorAbleitung, it: [Funktionen])
|
|
||||||
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
|
|
||||||
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
|
|
||||||
- $f(x)$ diffbar $=>$ $f(x)$ stetig
|
|
||||||
|
|
||||||
#subHeading(fill: colorAbleitung, it: [Ableitung])
|
#bgBlock(fill: colorAbleitung)[
|
||||||
#grid(
|
#subHeading(fill: colorAbleitung, it: [Funktionen])
|
||||||
row-gutter: 3mm,
|
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
|
||||||
columns: (1fr, 1fr),
|
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
|
||||||
grid.cell(
|
- $f(x)$ diffbar $=>$ $f(x)$ stetig
|
||||||
colspan: 2,
|
]
|
||||||
[$f(x) + g(x) : f'(x) + g'(x) $]
|
|
||||||
),
|
#bgBlock(fill: colorAbleitung)[
|
||||||
grid.cell(
|
#subHeading(fill: colorAbleitung, it: [Ableitung])
|
||||||
colspan: 2,
|
#grid(
|
||||||
[$f(x) dot g(x) : f'(x)g(x) + f(x)g'(x) $]
|
row-gutter: 3mm,
|
||||||
),
|
columns: (1fr, 1fr),
|
||||||
grid.cell(
|
grid.cell(
|
||||||
colspan: 2,
|
colspan: 2,
|
||||||
[#MathAlignLeft($ f(x)/g(x) : (f'(x)g(x) - f(x)g'(x))/(g(x)^2) $)]
|
[$f(x) + g(x) : f'(x) + g'(x) $]
|
||||||
),
|
),
|
||||||
[$f(x) = c : f'(x) = 0$],
|
grid.cell(
|
||||||
[$c dot f(x) : c dot f'(x)$],
|
colspan: 2,
|
||||||
[$(x^(-n)) n in NN : n x^(n-1)$],
|
[$f(x) dot g(x) : f'(x)g(x) + f(x)g'(x) $]
|
||||||
)
|
),
|
||||||
|
grid.cell(
|
||||||
|
colspan: 2,
|
||||||
|
[#MathAlignLeft($ f(x)/g(x) : (f'(x)g(x) - f(x)g'(x))/(g(x)^2) $)]
|
||||||
|
),
|
||||||
|
[$f(x) = c : f'(x) = 0$],
|
||||||
|
[$c dot f(x) : c dot f'(x)$],
|
||||||
|
[$(x^(-n)) n in NN : n x^(n-1)$],
|
||||||
|
)
|
||||||
|
]
|
||||||
|
|
||||||
#colbreak()
|
#colbreak()
|
||||||
]
|
]
|
||||||
Reference in New Issue
Block a user