diff --git a/src/cheatsheets/Analysis1.typ b/src/cheatsheets/Analysis1.typ index ac86ac6..8a899f2 100644 --- a/src/cheatsheets/Analysis1.typ +++ b/src/cheatsheets/Analysis1.typ @@ -5,7 +5,7 @@ #show math.sum: it => math.limits(math.sum) #let lim = $limits("lim")$ -#set text(7pt) +#set text(7.5pt) #set page( paper: "a4", @@ -43,7 +43,7 @@ #let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%) -#columns(4, gutter: 2mm)[ +#columns(5, gutter: 2mm)[ // Allgemeiner Shit #bgBlock(fill: colorAllgemein)[ @@ -90,6 +90,16 @@ [ *Fakultäten* $0! = 1! = 1$ \ ], + [ + *Mitternachtsformel* + $x_(1,2) = (-b plus.minus sqrt(b^2 + 4a c))/(2a)$ + ], + [ + *Binomische Formel*\ + $(a + b)^2 = a^2 + 2a b + b^2$\ + $(a - b)^2 = a^2 - 2a b + b^2$\ + $(a + b)(a - b) = a^2 - b^2$\ + ] ) ] @@ -511,14 +521,15 @@ // Ableitungstabelle #block([ - #set text(size: 10pt) + #set text(size: 7pt) #table( align: horizon, - columns: (1fr, 1fr, 1fr), + columns: (auto, auto, auto), table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]), row-gutter: 1mm, - fill: (x, y) => if x == 0 { color.hsl(180deg, 89.47%, 88.82%) } - else if x == 1 { color.hsl(180deg, 100%, 93.14%) } else + inset: 1.4mm, + fill: (x, y) => if calc.rem(x, 3) == 0 { color.hsl(180deg, 89.47%, 88.82%) } + else if calc.rem(x, 3) == 1 { color.hsl(180deg, 100%, 93.14%) } else { color.hsl(180deg, 81.82%, 95.69%) }, [$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$], [$ln abs(x)$], [$1/x$], [$-1/x^2$], @@ -526,6 +537,10 @@ [$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$], [$e^x$], [$e^x$], [$e^x$], [$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$], + $-cos(x)$, $sin(x)$, $cos(x)$, + $sin(x)$, $cos(x)$, $-sin(x)$, + $-ln abs(cos(x))$, $tan(x)$, $1/(cos(x)^2)$, + $ln abs(sin(x))$, $cot(x)$, $-1/(sin(x)^2)$, [$x arcsin(x) + sqrt(1 - x^2)$], [$arcsin(x)$], [$1/sqrt(1 - x^2)$], @@ -536,16 +551,16 @@ [$x arctan(x) - 1/2 ln abs(1 + x^2)$], [$arctan(x)$], [$1/(1 + x^2)$], - [$x op("arccot")(x) + \ 1/2 ln abs(1 + x^2)$], + [$x op("arccot")(x) + 1/2 ln abs(1 + x^2)$], [$op("arccot")(x)$], [$-1/(1 + x^2)$], - [$x op("arsinH")(x) + \ sqrt(1 + x^2)$], + [$x op("arsinH")(x) + sqrt(1 + x^2)$], [$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$], - [$x op("arcosH")(x) + \ sqrt(1 + x^2)$], + [$x op("arcosH")(x) + sqrt(1 + x^2)$], [$op("arcosH")(x)$], [$1/sqrt(x^2-1)$], - [$x op("artanH")(x) + \ 1/2 ln(1 - x^2)$], + [$x op("artanH")(x) + 1/2 ln(1 - x^2)$], [$op("artanH")(x)$], [$1/(1 - x^2)$], ) ]) @@ -691,24 +706,58 @@ $abs(f(x)) <= g(x) => $ $f(x)$ konvergent ]) + #bgBlock(fill: colorIntegral, [ + #subHeading(fill: colorIntegral)[Partial-Bruch-Zerlegung] + Form: $integral "Zähler Polynom"/"Nenner Polynom"$, + $deg("Nenner") < deg("Zähler")$ + 1. $deg("Zähler") >= deg("Nenner") ->$ *Polynomdivision* + 2. *Faktorisieren des Nenners (Nst finden)*, \ + Polynomdivision, Raten, Binomische Formel \ + Resulat: $N = (x - x_0)^(n_0+)(x - x_1)^(n_1)... (x^2+b x + c)^(m_1)$ + 3. *Ansatz:* $A$\ + $(x-x_0)^n -> A/((x - x_0)^n) + B/((x - x_0)^(n-1)) ... + C/(x - x_0)$\ + $(x^2 + b x + c)^n -> (A x + B)/((x^2 + b x + c)^n) ... + (C x + D)/((x^2 + b x + c)^1) $ + + 4. *Durchmul.* $"Ansatz" dot 1/("Fakt. Nenner") = "Zähler"$ + 5. $A,B,...$ : + Nst einsetzen, dann Koeffizientenvergleich + 6. *Intergral wiederzusammen setzen $+c$* + 7. Summen teile Integrieren + + $delta = 4a - b^2$ + #grid(columns: (auto, auto), + row-gutter: 2mm, + column-gutter: 2mm, + $integral 1/(x - x_0)$, $ln abs(x - x_0)$, + $integral 1/((x - x_0)^n)$, $-1/((n-1)(x-x_0)^(n-1))$, + $integral 1/(x^2 + b x + c)$, $2/sqrt(delta) arctan((2x + b)/sqrt(delta))$, + $integral 1/((x^2 + b x + c)^n)$, $(2x + b)/((n-1)(sigma)(x^2+b x +c)^(n-1)) + \ + (2(2n-3))/((n-1)(delta)) + (C ) + $, + ) + + + + ]) + #bgBlock(fill: colorAllgemein, [ #subHeading(fill: colorAllgemein, [Sin-Table]) #sinTable ]) #bgBlock(fill: colorAllgemein, [ - #subHeading(fill: colorAllgemein)[Bedingungen] + #subHeading(fill: colorAllgemein)[Notwending und Hinreiched] #grid(columns: (1fr, 1fr), gutter: 2mm, inset: (left: 2mm, right: 2mm), - $not "notwending" => not "Satz"$, - $"hinreichend" => "Satz"$, - $"Satz" => forall "notwending" $, - $not "Satz" => forall not "hinreichend" $, + $not "not." => not "Satz"$, + $"hin." => "Satz"$, + $"Satz" => forall "not." $, + $not "Satz" => forall not "hin." $, - $"notwending" arrow.r.double.not "Satz"$, - $not "hinreichend" arrow.r.double.not "Satz"$, + $"not." arrow.r.double.not "Satz"$, + $not "hin." arrow.r.double.not "Satz"$, ) ]) ] diff --git a/src/cheatsheets/Digitaltechnik.typ b/src/cheatsheets/Digitaltechnik.typ index 7a16d94..b6f2e77 100644 --- a/src/cheatsheets/Digitaltechnik.typ +++ b/src/cheatsheets/Digitaltechnik.typ @@ -186,7 +186,31 @@ ] #bgBlock(fill: colorRealsierung)[ - #subHeading(fill: colorRealsierung)[CMOS] + #subHeading(fill: colorRealsierung)[CMOS Verzögerung] + + *Inverter*\ + $t_("p"/"nLH") ~ (C_"L" t_"ox" L_"p/n")/(W_"p/n" mu_"p/n" epsilon(V_"DD" - abs(V_"Tpn"))) $ + + #grid( + columns: (1fr, 1fr), + [ + *Steigend mit* + - Last $C_L$ + - Oxyddicke $T_"ox"$ + - Kandlalänge $L_"p/n"$ + - Schwellspannung $V_"Tp/n"$ + ], + [ + *Sinkend mit* + - Kanalweite + - Landsträger Veweglichkeit $mu_"p/n"$ + ], + + ) + + $t_p ~ C_L/(beta(V_"DD" - abs(V_"T")))$ + + $t_p ~ C_L/(W(V_"DD" - abs(V_"T")))$ ] #bgBlock(fill: colorState)[