Files
TUM-Formelsammlungen/src/cheatsheets/Analysis1.typ
alexander d3e4df0a3f
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s
Moved Math macros to seperte file
2026-02-02 07:34:12 +01:00

761 lines
22 KiB
Typst

#import "@preview/mannot:0.3.1"
#import "../lib/common_rewrite.typ" : *
#import "../lib/mathExpressions.typ" : *
#set text(7.5pt)
#set page(
paper: "a4",
margin: (
bottom: 10mm,
top: 5mm,
left: 5mm,
right: 5mm
),
flipped:true,
footer: context [
#grid(
align: center,
columns: (1fr, 1fr, 1fr),
[#align(left, datetime.today().display("[day].[month].[year]"))],
[#align(center, counter(page).display("- 1 -"))],
[#align(right, image("../images/cc0.png", height: 5mm,))]
)
],
)
#place(top+center, scope: "parent", float: true, heading(
[Analysis 1 (IE)]
))
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
#let MathAlignLeft(e) = {
align(left, block(e))
}
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorFolgen = color.hsl(202.05deg, 92.13%, 75.1%)
#let colorReihen = color.hsl(280deg, 92.13%, 75.1%)
#let colorAbleitung = color.hsl(356.92deg, 92.13%, 75.1%)
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
#columns(5, gutter: 2mm)[
// Allgemeiner Shit
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Allgemeins]
#grid(
columns: (1fr, 1fr),
inset: 0mm,
gutter: 2mm,
[
*Dreiecksungleichung* \
$abs(x + y) <= abs(x) + abs(y)$ \
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
],
[
*Cauchy-Schwarz-Ungleichung*\
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
],
[
*Geometrische Summenformel*\
$sum_(k=1)^(n) k = (n(n+1))/2$ \
],
[
*Bernoulli-Ungleichung* \
$(1 + a)^n x in RR >= 1 + n a$ \
],
[
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
],
[
*Binomische Formel*\
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
],
[
*Bekannte Werte* \
$e approx 2.71828$ ($2 < e < 3$) \
$pi approx 3.14159$ ($3 < pi < 4$)
],
[
*Gaußklammer*: \
$floor(x) = text("floor")(x)$ \
$ceil(x) = text("ceil")(x)$ \
],
[
*Fakultäten* $0! = 1! = 1$ \
],
[
*Mitternachtsformel*
$x_(1,2) = (-b plus.minus sqrt(b^2 + 4a c))/(2a)$
],
[
*Binomische Formel*\
$(a + b)^2 = a^2 + 2a b + b^2$\
$(a - b)^2 = a^2 - 2a b + b^2$\
$(a + b)(a - b) = a^2 - b^2$\
]
)
]
// Complex Zahlen
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
#ComplexNumbersSection()
#grid(
columns: (1fr, 1fr),
row-gutter: 2mm,
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
grid.cell(
colspan: 1,
align: center,
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
),
grid.cell(
colspan: 1,
align: center,
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
)
)
#subHeading(fill: colorAllgemein)[Trigonmetrie]
*Additionstheorem* \
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
$tan(x +y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
$arctan(1/x) + arctan(x) = cases(
x > 0 : pi/2,
x < 0 : -pi/2
)$
*Doppelwinkel Formel* \
$cos(2x) = cos^2(x) - sin^2(x)$ \
$sin(2x) = 2sin(x)cos(x)$
#grid(
gutter: 2mm,
columns: (auto, auto, auto),
$cos^2(x) = (1 + cos(2x))/2$,
$sin^2(x) = (1 - cos(2x))/2$,
$cos(-x) = cos(x)$,
$sin(-x) = -sin(x)$,
grid.cell(colspan: 2, $cos^2(x) + sin^2(x) = 1$)
)
Subsitution mit Hilfsvariable
#grid(
gutter: 5mm,
row-gutter: 3mm,
columns: (auto, auto),
[$tan(x)=sin(x)/cos(x)$],
[$cot(x)=cos(x)/sin(x)$],
[$tan(x)=-cot(x + pi/2)$],
[$cot(x)=-tan(x + pi/2)$],
[$cos(x - pi/2) = sin(x)$],
[$sin(x + pi/2) = cos(x)$],
)
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
Für $x in [-1, 1]$ \
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
]
// Folgen Allgemein
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen]
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
- Beweiße: durch Induktion
- Beweiße: Hat min. ein konvergent Teilefolge
- (Beweiße: Ungleichung $abs(a_n) <= k$)
*Monoton fallend/steigended*
- Beweise: Induktion
#grid(columns: (1fr, 1fr),
inset: 0.2mm,
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
[$ a_(n+1) <= a_(n), quad a_(n+1) >= a_(n) $],
[$ a_(n+1)/a_(n) < 1, quad a_(n+1)/a_(n) > 1 $],
)
*Konvergentz Allgemein*
$lim_(n -> infinity) a_n = a$
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
- Divergent $-> infinity$: $a_n in [epsilon, infinity) $
- Divergent $-> infinity$: $a_n in (-infinity, epsilon) $
$space forall n > n_epsilon$
*Konvergentz Häufungspunkte*
- $a_n -> a <=>$ Alle Teilfolgen $-> a$
*Folgen in $CC$* (Alle Regeln von $RR$ gelten)\
- $z_n in CC : lim z_n <=> lim abs(z_n) = 0$
- Zerlegen in $a + b i$ oder $abs(z) dot e^(i phi)$
]
// Folgen Strat
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
- Von Bekannten Ausdrücken aufbauen
- *Monoton UND Beschränkt $=>$ Konvergenz*
- Fixpunk Gleichung: $a = f(a)$ \
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
$(1 + a)^n >= 1 + n a$
- Sandwitchtheorem:\
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
- Zwerlegen in Konvergente Teil folgen \
(Vorallem bei $(-1)^n dot a_n$)
- (Cauchyfolge \
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
Cauchyfolge $=>$ Konvergenz)
*Divergenz*
- $a_n$ unbeschränkt $=>$ divergenz
- Vergleichskriterium: \
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
]
// L'Hospital
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[L'Hospital]
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
(Konvergenz gegen $b$, beliebiges $a$)
Bendingungen:
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
2. $g'(x) != 0, x in (a,b)$
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ konveriert
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
Kann auch Reksuive angewendet werden!
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
]
// Bekannte Folgen
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Bekannte Folgen]
#grid(
columns: (auto, auto),
align: bottom,
gutter: 2mm,
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
grid.cell(
rowspan: 2,
[$ lim_(n->infinity) (a_n / b_n) = a / b $ für ($b != 0$)],
),
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
)
#grid(
columns: (auto, auto),
column-gutter: 4mm,
row-gutter: 2mm,
align: bottom,
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
MathAlignLeft($ e^x = lim_(n->infinity) (1 + x/n)^n $),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
0 &abs(q),
1 &q = 1,
plus.minus infinity &q < -1,
plus infinity #h(5mm) &q > 1
) $)), []
)
]
// Teilfolgen
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Teilfolgen]
$ a_k subset a_n space (text("z.B") k= 2n + 1) $
- Index muss streng monoton steigen!
- Beschränkte $a_n => text("min eine konvergente") a_k$
- Konvergenz-Werte von $a_k$ sind Häufungspunkte
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
]
// Reihen
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Reihen]
$limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \
- *Absolute Konvergenz* \
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
- *Partialsummen* \
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
$=>$ _Absolute Konvergent_
- *(Cauchy-Kriterium)*\
konvergent wenn $forall epsilon > 0 space exists n_epsilon in NN$ \
sodass $abs(s_n - s_m) = abs(limits(sum)_(k=m+1)^(n)) < epsilon space$ \
$forall n_epsilon < m < n $
- *Leibnitzkriterium* \
Alternierend + Nullfolge \
$=> limits(sum)_(n=1)^infinity (-1)^n dot a_n$ konvergent
- *Vergleichskriterium* \
$a_n, b_n : abs(a_n) <= b_n space forall n in NN > N_0, N_0 in NN$
1. $limits(sum)_(n=0)^infinity b_n$ konvergent $=> limits(sum)_(n=0)^infinity abs(a_n)$ konvergent \
Suche $b_n$ für Konvergenz
2. $limits(sum)_(n=0)^infinity abs(a_n)$ divergent $=> limits(sum)_(n=0)^infinity b_n$ divergent \
Suche $abs(a_n)$ für Divergenz
Nützlich:
- Dreiecksungleichung
- $forall space n > N_0 in NN space exists k,q in RR$ \
sodass $q > 1$: $n^k <= q^n$ (Potenz stärker Polynom)
- *Quotientenkriterium und Wurzelkriterium*
1. $rho = lim_(n -> infinity) abs((a_(n+1))/(a_n)) $
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
*Reihen in $CC$*
- Alles
]
// Potenzreihen
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Potenzreihen]
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
#grid(
columns: (auto, auto),
column-gutter: 5mm,
row-gutter: 1.5mm,
[*Konvergenzradius*], [$|z - z_0| < R : $ absolute Konvergenz],
[], [$|z - z_0| = R : $ Keine Aussage],
[], [$|z - z_0| > R : $ Divergent]
)
#grid(
columns: (1fr, 1fr),
$R = lim_(n->infinity) abs(a_n/(a_(n+1))) = 1/(lim_(n->infinity) root(n, abs(a_n)))$,
$R = limits(liminf)_(n->infinity) abs(a_n/(a_(n+1))) = 1/(limits(limsup)_(n->infinity) root(n, abs(a_n)))$
)
]
// Bekannte Reihen
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Bekannte Reihen]
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
*Binomische Reihe:*
*Reihendarstellungen*
#grid(
columns: (1fr, 1fr),
gutter: 3mm,
row-gutter: 3mm,
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
$sin(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n+1))/((2n + 1)!)$,
$cos(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n))/((2n)!)$
)
]
// Ableitung
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Funktionen]
$f(x) = y, f : A -> B$
*Injectiv (Monomorphismus):* one to one\
$f(x) = f(y) <=> x = y quad$
*Surjectiv (Epimorhismis):* Output space coverered \
- $forall x in B : exists x in A : f(x) = y$
*Bijektiv*
injektiv UND Surjectiv $<=>$ Umkehrbar
]
// Funktions Sätze
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Funktionen Sätze]
$f(x)$ diff'bar $=> f(x)$ stetig
$f(x)$ stetig diff'bar $=> f(x)$ diff'bar, stetig UND $f'(x)$ stetig
#line(length: 100%, stroke: 0.3mm)
Sei $f : I =[a,b] -> RR$, stetig auf $x in I$
- *Zwischenwertsatz* \
$=> forall y in ["min", "max"] space exists text("min. ein") x in [a,b] : f(x) = y$ \
_Beweiß für mindest. n Nst_
- *Mittelwertsatz der Diff'rechnung* \
diff'bar $x in (a,b)$ \
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
- *Mittelwertsatz der Integralrechnung*\
$g -> RR "integrierbar," g(x)>= 0 forall x in [a,b]$\
$exists xi in [a,b] : integral_a^b f(x)g(x) d x = f(xi) integral_a^b g(x) d x$
- *Satze von Rolle* \
diffbar $x in (a,b)$\
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
- *Hauptsatz der Integralrechung*
Sei $f: [a,b] -> RR$ stetig
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
$=> F'(x) = f(x) forall x in [a,b]$
]
// Stetigkeit
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Stetigkeit]
*Allgemein*
$f(x)$ ist stetig wenn: \
$ limits(lim)_(x->x_0-) f(x) = limits(lim)_(x->x_0+) f(x) = f(x_0) $ \
$x in DD$ Beachten! Definitionslücken $!=$ unstätig \
Definition gilt auch für $I subset RR$
*Regeln*
$f(x),g(x)$ seinen stetig dann sind auch Stetig:
#grid(columns: (auto, auto, auto, auto, auto),
column-gutter: 4mm,
row-gutter: 2mm,
$f(x) + g(x)$, $f circle.small g$, $alpha dot f(x)$,
$f(x)/g(x)$, $f(x) dot g(x)$
)
*Bekannte Funktion*
#table(
columns: (1fr, 1fr),
table.header(
[*Stetig*], [*Nicht Stetig*]
),
stroke: (x, y) => (x: 0mm, y: 0.2mm),
[
- Polynome, gebrochen Rationale Fn
- $floor(x),ceil(x)$ für $x in RR without ZZ$
- Betrags Funktion
- $sin, cos, tan$
],
[
- Stufenfunktion
- Fall Unterscheidungen
- $floor(x),ceil(x)$ für $x in RR$
]
)
]
// Ableitung
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Ableitung]
*Differenzierbarkeit*
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
- Tangente an $x_0$: $f(x_0) + f'(x_0)(x - x_0)$
- Beste #underline([linear]) Annäherung
- Tangente $t(x)$ von $f(x)$ an der Stelle $x_0$: $ lim_(x->0) (f(x) - f(x_0))/(x-x_0) -f'(x_0) =0 $
*Ableitung Regeln*
#grid(
row-gutter: 3mm,
columns: (1fr, 1fr),
grid.cell(
colspan: 2,
[$f(x) + g(x) : f'(x) + g'(x) $]
),
grid.cell(
colspan: 2,
[$f(x) dot g(x) : f'(x)g(x) + f(x)g'(x) $]
),
grid.cell(
colspan: 2,
[#MathAlignLeft($ f(x)/g(x) : (f'(x)g(x) - f(x)g'(x))/(g(x)^2) $)]
),
[$f(x) = c : f'(x) = 0$],
[$c dot f(x) : c dot f'(x)$],
[$(x^(-n)) n in NN : n x^(n-1)$],
[$e^(x) : e^(x)$],
)
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
],
// Ableitungstabelle
#block([
#set text(size: 7pt)
#table(
align: horizon,
columns: (auto, auto, auto),
table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]),
row-gutter: 1mm,
inset: 1.4mm,
fill: (x, y) => if calc.rem(x, 3) == 0 { color.hsl(180deg, 89.47%, 88.82%) }
else if calc.rem(x, 3) == 1 { color.hsl(180deg, 100%, 93.14%) } else
{ color.hsl(180deg, 81.82%, 95.69%) },
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
[$x ln(a x) - x$], [$ln(a x)$], [$a / x$],
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
[$e^x$], [$e^x$], [$e^x$],
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
$-cos(x)$, $sin(x)$, $cos(x)$,
$sin(x)$, $cos(x)$, $-sin(x)$,
$-ln abs(cos(x))$, $tan(x)$, $1/(cos(x)^2)$,
$ln abs(sin(x))$, $cot(x)$, $-1/(sin(x)^2)$,
[$x arcsin(x) + sqrt(1 - x^2)$],
[$arcsin(x)$], [$1/sqrt(1 - x^2)$],
[$x arccos(x) - sqrt(1 - x^2)$],
[$arccos(x)$], [$-1/sqrt(1 - x^2)$],
[$x arctan(x) - 1/2 ln abs(1 + x^2)$],
[$arctan(x)$], [$1/(1 + x^2)$],
[$x op("arccot")(x) + 1/2 ln abs(1 + x^2)$],
[$op("arccot")(x)$], [$-1/(1 + x^2)$],
[$x op("arsinH")(x) + sqrt(1 + x^2)$],
[$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$],
[$x op("arcosH")(x) + sqrt(1 + x^2)$],
[$op("arcosH")(x)$], [$1/sqrt(x^2-1)$],
[$x op("artanH")(x) + 1/2 ln(1 - x^2)$],
[$op("artanH")(x)$], [$1/(1 - x^2)$],
)
])
// Extremstellen, Krümmung, Monotonie
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
*Monotonie* $forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) <= f(x_1)$
Hinreichende: $f'(x) >= 0$ \
Konstante Funktion bei $f'(x) = 0$
*Streng Monoton*
$forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) < f(x_1)$ \
Notwendig: $f'(x) >= 0$ (Aber nicht hinreichend)
*Extremstellen Kandiaten*
1. $f'(x) = 0$
2. Definitionslücken
3. Randstellen von $DD$
#grid(columns: (1fr, 1fr),
gutter: 2mm,
[
*Minima*\
$x_0,x in I : f(x_0) < f(x)$ \
$f''(x) > 0 $ \
$f'(x) : - space 0 space +$
],
[
*Maxima*\
$x_0,x in I : f(x_0) > f(x)$ \
$f''(x) < 0$ \
$f'(x) : + space 0 space -$
],
[
*Wendepunkt*\
$f''(x) = 0$ \
$f'(x) : plus.minus space ? space plus.minus$
],
[
*Stattelpunkt/Terrasenpunkt* \
$f'''(x) != 0$
$f''(x) = 0$ UND $f'(x) = 0$ \
$f'(x) : plus.minus space 0 space plus.minus$ \
],
[
*Extremstelle* \
$f'(x) = 0$
]
)
#grid(columns: (1fr, 1fr),
gutter: 2mm,
[
*konkav* $f''(x) <= 0$ \ rechtsgekrümmt \
Sekante liegt unter $f(x)$ \
(eingebäult, von $y= -infinity$ aus)
],
[
*konvex* $f''(x) >= 0$ \ linksgekrümmt \
Sekante liegt über $f(x)$ \
(ausgebaucht, von $y= -infinity$ aus)
]
)
*Strange Konkav/Konvex* \
Notwendig $f''(x) lt.gt 0$
]
// Integral
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral])
Wenn $f(x)$ stetig und monoton $=>$ integrierbar
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Ungleichung:* \
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
*Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
$integral_a^b u(x) dot v'(x) d x = [u(x)v(x)]_a^b - integral_a^b u'(x) dot v(x)$
*Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
1. Ersetzung: $t := g(x)$
2. Umformen:
$(d y)/(d x) = g'(x)$
3. $x$-kürzen sich weg
])
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral])
*Riemann Integral*\
$limits(sum)_(x=a)^(b) f(i)(x_())$
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Integral Type*\
- Eigentliches Int.: $integral_a^b f(x) d x$
- Uneigentliches Int.: \
$limits(lim)_(epsilon -> 0) integral_a^(b + epsilon) f(x) d x$ \
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
*Cauchy-Hauptwert*
$integral_(-infinity)^(+infinity) f(x)$ \
NUR konvergent wenn: \
$limits(lim)_(R -> -infinity) integral_(R)^(a) f(x) d x$ und $limits(lim)_(R -> infinity) integral_(a)^(R) f(x) d x$ konvergent für $a in RR$
$integral_(-infinity)^(infinity) f(x) d x$ existiert \
$=> lim_(M -> infinity) integral_(-M)^(M) f(x) d x = integral_(-infinity)^(infinity) f(x) d x$
*Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
*Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot 1/(g'(x)) d x$
1. Ersetzung: $ d x := d t dot g'(x)$ und $t := g(x)$
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
3. $x$-kürzen sich weg
*Absolute "Konvergenz"* \
Wenn $g(x)$ konvergent,
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
])
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral)[Partial-Bruch-Zerlegung]
Form: $integral "Zähler Polynom"/"Nenner Polynom"$,
$deg("Nenner") < deg("Zähler")$
1. $deg("Zähler") >= deg("Nenner") ->$ *Polynomdivision*
2. *Faktorisieren des Nenners (Nst finden)*, \
Polynomdivision, Raten, Binomische Formel \
Resulat: $N = (x - x_0)^(n_0+)(x - x_1)^(n_1)... (x^2+b x + c)^(m_1)$
3. *Ansatz:* $A$\
$(x-x_0)^n -> A/((x - x_0)^n) + B/((x - x_0)^(n-1)) ... + C/(x - x_0)$\
$(x^2 + b x + c)^n -> (A x + B)/((x^2 + b x + c)^n) ... + (C x + D)/((x^2 + b x + c)^1) $
4. *Durchmul.* $"Ansatz" dot 1/("Fakt. Nenner") = "Zähler"$
5. $A,B,...$ :
Nst einsetzen, dann Koeffizientenvergleich
6. *Intergral wiederzusammen setzen $+c$*
7. Summen teile Integrieren
$delta = 4a - b^2$
#grid(columns: (auto, auto),
row-gutter: 2mm,
column-gutter: 2mm,
$integral 1/(x - x_0)$, $ln abs(x - x_0)$,
$integral 1/((x - x_0)^n)$, $-1/((n-1)(x-x_0)^(n-1))$,
$integral 1/(x^2 + b x + c)$, $2/sqrt(delta) arctan((2x + b)/sqrt(delta))$,
$integral 1/((x^2 + b x + c)^n)$, $(2x + b)/((n-1)(sigma)(x^2+b x +c)^(n-1)) + \
(2(2n-3))/((n-1)(delta)) + (C )
$,
)
])
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable
])
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein)[Notwending und Hinreiched]
#grid(columns: (1fr, 1fr),
gutter: 2mm,
inset: (left: 2mm, right: 2mm),
$not "not." => not "Satz"$,
$"hin." => "Satz"$,
$"Satz" => forall "not." $,
$not "Satz" => forall not "hin." $,
$"not." arrow.r.double.not "Satz"$,
$not "hin." arrow.r.double.not "Satz"$,
)
])
]