Compare commits
9 Commits
latest
...
7db8bd3ce7
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7db8bd3ce7 | ||
|
|
f53eaa776e | ||
| 4093cde50a | |||
|
|
58d114d895 | ||
|
|
a36d8b0c51 | ||
|
|
a578c545e8 | ||
|
|
042300ed1f | ||
|
|
af0d1d060e | ||
|
|
8aa363b825 |
@@ -29,15 +29,15 @@ jobs:
|
||||
|
||||
- name: Compile Analysis1
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Analysis1.typ build/Analysis1.pdf
|
||||
run: typst compile --root src src/cheatsheets/Analysis1.typ "build/Analysis 1.pdf"
|
||||
|
||||
- name: Compile Schaltungstheorie
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ build/Schaltungstheorie.pdf
|
||||
run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ "build/Schaltungstheorie.pdf"
|
||||
|
||||
- name: Compile LinAlg
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/LinearAlgebra.typ build/LinearAlgebra.pdf
|
||||
run: typst compile --root src src/cheatsheets/LinearAlgebra.typ "build/Linear Algebra.pdf"
|
||||
|
||||
- name: Create Gitea Release
|
||||
continue-on-error: true
|
||||
|
||||
@@ -1,6 +1,11 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
|
||||
#set text(7pt)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
@@ -40,40 +45,28 @@
|
||||
#columns(4, gutter: 2mm)[
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Allgemeins]
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
row-gutter: 2mm,
|
||||
column-gutter: 3mm,
|
||||
[Dreiecksungleichung], [
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$
|
||||
],
|
||||
[Cauchy-Schwarz-Ungleichung], [
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
||||
],
|
||||
[Geometrische Summenformel], [
|
||||
#MathAlignLeft($ limits(sum)_(k=1)^(n) k = (n(n+1))/2 $)
|
||||
],
|
||||
[Bernoulli-Ungleichung ], [
|
||||
$(1 + a)^n x in RR >= 1 + n a$
|
||||
],
|
||||
[Binomialkoeffizient], [
|
||||
$binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
],
|
||||
[Binomische Formel], [
|
||||
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
|
||||
],
|
||||
[Fakultäten], [$ 0! = 1! = 1 $],
|
||||
|
||||
[Gausklammer], [
|
||||
*Dreiecksungleichung* \
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
|
||||
*Cauchy-Schwarz-Ungleichung*\
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
|
||||
*Geometrische Summenformel*\
|
||||
$sum_(k=1)^(n) k = (n(n+1))/2$ \
|
||||
*Bernoulli-Ungleichung* \
|
||||
$(1 + a)^n x in RR >= 1 + n a$ \
|
||||
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
|
||||
*Binomische Formel*\
|
||||
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Fakultäten* $0! = 1! = 1$ \
|
||||
*Gaußklammer*: \
|
||||
$floor(x) = text("floor")(x)$ \
|
||||
$ceil(x) = text("ceil")(x)$
|
||||
],
|
||||
[Bekannte Werte], [
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
]
|
||||
)
|
||||
$ceil(x) = text("ceil")(x)$ \
|
||||
*Bekannte Werte* \
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
@@ -84,8 +77,20 @@
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
row-gutter: 2mm,
|
||||
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
|
||||
grid.cell(
|
||||
colspan: 2,
|
||||
align: center,
|
||||
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
),
|
||||
grid.cell(
|
||||
colspan: 2,
|
||||
align: center,
|
||||
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
)
|
||||
|
||||
)
|
||||
#subHeading(fill: colorAllgemein)[Trigonmetrie]
|
||||
*Additionstheorem* \
|
||||
@@ -93,6 +98,10 @@
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
|
||||
$arctan(1/x) + arctan(x) = cases(
|
||||
x > 0 : pi/2,
|
||||
x < 0 : -pi/2
|
||||
)$
|
||||
|
||||
*Doppelwinkel Formel* \
|
||||
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||
@@ -176,8 +185,10 @@
|
||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $=>$ Konvergenz)
|
||||
- $a_n$ unbeschränkt $=>$ divergenz
|
||||
]
|
||||
|
||||
*Konvergent Grenzwert finden*
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
|
||||
- Von Bekannten Ausdrücken aufbauen
|
||||
- Fixpunk Gleichung: $a = f(a)$ \
|
||||
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
|
||||
@@ -189,6 +200,25 @@
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
- Zwerlegen in Konvergente Teil folgen \
|
||||
(Vorallem bei $(-1)^n dot a_n$)
|
||||
|
||||
|
||||
*L'Hospital*
|
||||
|
||||
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
|
||||
|
||||
(Konvergenz gegen $b$, beliebiges $a$)
|
||||
|
||||
Bendingungen:
|
||||
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
|
||||
2. $g'(x) != 0, x in (a,b)$
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert
|
||||
|
||||
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
|
||||
|
||||
Kann auch Reksuive angewendet werden!
|
||||
|
||||
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
@@ -212,15 +242,14 @@
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Bekannte Folgen]
|
||||
#grid(
|
||||
columns: (auto, auto, auto),
|
||||
columns: (auto, auto),
|
||||
column-gutter: 4mm,
|
||||
row-gutter: 2mm,
|
||||
align: bottom,
|
||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||
[],
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
|
||||
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
MathAlignLeft($ e^x = lim_(n->infinity) (1 + x/n)^n $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
|
||||
0 &abs(q),
|
||||
1 &q = 1,
|
||||
@@ -246,8 +275,6 @@
|
||||
- *Absolute Konvergenz* \
|
||||
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
|
||||
|
||||
|
||||
|
||||
- *Partialsummen* \
|
||||
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
|
||||
$=>$ _Absolute Konvergent_
|
||||
@@ -278,19 +305,6 @@
|
||||
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
|
||||
|
||||
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||
|
||||
- *Geometrische Reihe*
|
||||
$limits(sum)_(n=0)^infinity q^n$
|
||||
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
- *Harmonische Reihe* $limits(sum)_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
- *Reihendarstellungen*
|
||||
1. $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
2. $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
3. $sin(x) = limits(sum)_(n=0)^infinity $
|
||||
4. $cos(x) = limits(sum)_(n=0)^infinity $
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorReihen)[
|
||||
@@ -305,9 +319,16 @@
|
||||
|
||||
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
*Andere*
|
||||
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
*Reihendarstellungen*
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
gutter: 3mm,
|
||||
row-gutter: 2mm,
|
||||
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
|
||||
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
|
||||
$sin(x) = limits(sum)_(n=0)^infinity $,
|
||||
$cos(x) = limits(sum)_(n=0)^infinity $
|
||||
)
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
@@ -330,7 +351,8 @@
|
||||
- *Monotonie* \
|
||||
$x in I : f'(x) < 0$: Streng monoton steigended \
|
||||
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
||||
(Analog bei (streng ) steigned/fallended)
|
||||
(Analog bei (streng ) steigned/fallended) \
|
||||
Konstante Funktion bei $f'(x) = 0$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
@@ -421,7 +443,7 @@
|
||||
{ color.hsl(180deg, 81.82%, 95.69%) },
|
||||
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
|
||||
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
|
||||
[$x ln(a x) - x$], [$ln(a x)$], [$1 / x$],
|
||||
[$x ln(a x) - x$], [$ln(a x)$], [$a / x$],
|
||||
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
|
||||
[$e^x$], [$e^x$], [$e^x$],
|
||||
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
|
||||
@@ -453,21 +475,81 @@
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Wenn $f(x)$ stetig und monoton $=>$ intbar
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Ungleichung:* \
|
||||
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
||||
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
||||
|
||||
*Hauptsatz der Integralrechung*
|
||||
|
||||
Sei $f: [a,b] -> RR$ stetig
|
||||
|
||||
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||
$=> F'(x) = f(x) forall x in [a,b]$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
$integral_a^b u(x) dot v'(x) d x = [u(x)v(x)]_a^b - integral_a^b u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $t := g(x)$
|
||||
2. Umformen:
|
||||
$(d y)/(d x) = g'(x)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
*Riemann Integral*\
|
||||
$limits(sum)_(x=a)^(b) f(i)(x_())$
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Integral Type*\
|
||||
- Eigentliches Int.: $integral_a^b f(x) d x$
|
||||
- Uneigentliches Int.: \
|
||||
$limits(lim)_(epsilon -> 0) integral_a^(b + epsilon) f(x) d x$ \
|
||||
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
|
||||
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
|
||||
|
||||
|
||||
*Cauchy-Hauptwert*
|
||||
|
||||
$integral_(-infinity)^(+infinity) f(x)$ \
|
||||
NUR konvergent wenn: \
|
||||
$limits(lim)_(R -> -infinity) integral_(R)^(a) f(x) d x$ und $limits(lim)_(R -> infinity) integral_(a)^(R) f(x) d x$ konvergent für $a in RR$
|
||||
|
||||
$integral_(-infinity)^(infinity) f(x) d x$ existiert \
|
||||
$=> lim_(M -> infinity) integral_(-M)^(M) f(x) d x = integral_(-infinity)^(infinity) f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot 1/(g'(x)) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
1. Ersetzung: $ d x := d t dot g'(x)$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
|
||||
*Absolute "Konvergenz"* \
|
||||
Wenn $g(x)$ konvergent,
|
||||
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
|
||||
])
|
||||
|
||||
]
|
||||
@@ -524,23 +606,4 @@ Konvergenz Radius $R = [0, infinity)$$$
|
||||
)$
|
||||
|
||||
$ R = limsup_(n -> infinity) $
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
|
||||
206
src/cheatsheets/Digitaltechnik.typ
Normal file
206
src/cheatsheets/Digitaltechnik.typ
Normal file
@@ -0,0 +1,206 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
bottom: 10mm,
|
||||
top: 5mm,
|
||||
left: 5mm,
|
||||
right: 5mm
|
||||
),
|
||||
flipped:true,
|
||||
footer: context [
|
||||
#grid(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Digitaltechnik]
|
||||
))
|
||||
|
||||
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||
#let MathAlignLeft(e) = {
|
||||
align(left, block(e))
|
||||
}
|
||||
|
||||
#let colorBoolscheLogic = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorOptimierung = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorRealsierung = color.hsl(280deg, 92.13%, 75.1%)
|
||||
#let colorState = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
//#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
#let LNot(x) = math.op($overline(#x)$)
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
#bgBlock(fill: colorBoolscheLogic)[
|
||||
#subHeading(fill: colorBoolscheLogic)[Allgemein]
|
||||
*Moorsches Gesetz:* 2x der Anzahl der Transistoren pro Fläche (in 2 Jahren)
|
||||
|
||||
Flächenskalierung eines Transistors: $1/sqrt(2)$
|
||||
|
||||
*Kombinatorisch:* Kein Gedächtnis
|
||||
|
||||
*(Synchrone) sequenentielle:* Mit Gedächtnis
|
||||
|
||||
*Fan-In:* Anzahl der Inputs eines Gatters
|
||||
|
||||
*Fan-Out:* Anzahl der Output Verbindungen eines Gatters
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorBoolscheLogic)[
|
||||
#subHeading(fill: colorBoolscheLogic)[Boolsche Algebra]
|
||||
|
||||
*Dualität*
|
||||
$LNot(0) = 1$, $LNot(1) = 0$
|
||||
|
||||
*Äquivalenz* $LNot((LNot(A)))=A$\
|
||||
$A dot A = A$, $A + 0 = A$ \
|
||||
|
||||
*Konstanz*
|
||||
$A dot 1 = A$ $A + 1 = 1$
|
||||
|
||||
*Komplementärgesetz* \
|
||||
$A dot LNot(A) = 0$, $A + LNot(A) = 1$
|
||||
|
||||
*Kommutativgesetz* \
|
||||
$A dot B = B dot A$, $A + B = B + A$
|
||||
|
||||
*Assoziativgesetz*\
|
||||
$A dot (B dot C) = (A dot B) dot C$\
|
||||
$A + (B + C) = (A + B) + C$
|
||||
|
||||
*Distributivgesetz*\
|
||||
$A dot (B + C) = A dot B + A dot C$ \
|
||||
$A + (B dot C) = (A + B) dot (A + C)$
|
||||
|
||||
*De Morgan*\
|
||||
$LNot((A + B)) = LNot(A) dot LNot(B)$\
|
||||
$LNot((A dot B)) = LNot(A) + LNot(B)$
|
||||
|
||||
*Absorptionsgesetz*\
|
||||
$A + (A dot B) = A$\
|
||||
$A dot (A + B) = A$
|
||||
|
||||
*Resolutionsgesetz (allgemein)*\
|
||||
$X dot A + LNot(X) + B = X dot A + LNot(X) dot B + bold(A dot B)$
|
||||
|
||||
*Resolutionsgesetz (speziell)*\
|
||||
$X dot A + LNot(X) dot A = A$\
|
||||
$(X + A) dot (LNot(X) + A) = A$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorBoolscheLogic)[
|
||||
#subHeading(fill: colorBoolscheLogic)[Boolsche Funktionen]
|
||||
|
||||
$f: {0,1}^n -> {0,1}$
|
||||
|
||||
Variablenmenge: ${x_0, x_1, ..., x_n}$\
|
||||
Literalmenge: ${x_0, ..., x_n, LNot(x_0), ... LNot(x_n)}$ \
|
||||
Einsmenge: $F = {underline(v) in {0,1}^n | f(underline(v)) = 1}$
|
||||
Nullmenge: $overline(F) = {underline(v) in {0,1}^n | f(underline(v)) = 0}$
|
||||
Don't-Care-Set: ${underline(v) in {0,1}^n | f(underline(v)) = *}$
|
||||
|
||||
Funktionsbündel: $underline(y) = underline(f)(underline(x))$ \
|
||||
$underline(f): {0,1}^n -> {0,1}^m$
|
||||
|
||||
*Kofaktoren* aka Bit $n$ fixen\
|
||||
$x_i : f_x_i = f(x_1, ..., 1, ..., x_n)$\
|
||||
$overline(x)_i : f_overline(x)_i = f(x_1, ..., 0, ..., x_n)$
|
||||
|
||||
*Substitutionsregel*
|
||||
|
||||
$x_i dot f = x_i dot f_x_i$
|
||||
|
||||
$overline(x)_i dot f = overline(x)_i dot f_overline(x)_i$
|
||||
|
||||
$x_i + f = x_i + f_overline(x)_i$
|
||||
|
||||
$overline(x)_i + f = overline(x)_i + f_x_i$
|
||||
|
||||
*Boolsche Expansion*\
|
||||
$f(underline(x)) = x_i dot f_x_i + overline(x)_i dot f_overline(x)_i$
|
||||
|
||||
$f(underline(x)) = (x_i + f_overline(x)_i) dot (overline(x)_i + f_x_i)$
|
||||
|
||||
$overline(f(underline(x))) = overline(x)_i dot overline(f_overline(x)_i) + x_i dot overline(f_x_i)$
|
||||
|
||||
$overline(f(underline(x))) = (overline(x)_i + overline(f_x_i)) dot (x_i + overline(f_overline(x)_i)) $
|
||||
|
||||
*Eigentschaften:*
|
||||
|
||||
tautologisch: $f(underline(x)) = 1, forall underline(x) in {0,1}^n$\
|
||||
kontradiktorisch: $f(underline(x)) = 0, forall underline(x) in {0,1}^n$\
|
||||
unabhängig von $x_i <=> f_x_i = f_overline(x)_i$\
|
||||
abhängig von $x_i <=> f_x_i != f_overline(x)_i$\
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorOptimierung)[
|
||||
#subHeading(fill: colorOptimierung)[Hauptsatz der Schaltalgebra]
|
||||
Jede $f(x_0, ...,x_n)$ kann als...
|
||||
- *Minterme $m$:* $ = LNot(x)_0 dot x_1 dot ...$\
|
||||
VerODERungen von VerUNDungen\
|
||||
$f(underline(x)) = m_0 + m_1 + ... + m_n$
|
||||
|
||||
- *Maxterme $M$:* $ = LNot(x)_0 + x_1 ü ...$\
|
||||
VerUNDungen von VerODERungen\
|
||||
$f(underline(x)) = m_0 dot m_1 dot ... dot m_n$
|
||||
|
||||
... dargestellt werden
|
||||
|
||||
*DNF:* Disjunktive Normalform, *Minterme*
|
||||
- Term $tilde.equiv$ $1$-Zeile
|
||||
- $LNot(x)_0 dot x_1 + x_0 dot x_1 +...$\
|
||||
- $1 tilde.equiv x_0$, $0 tilde.equiv overline(x_0)$
|
||||
|
||||
*KNF:* Konjunktive Normalform, *Maxterme*
|
||||
- Term $tilde.equiv$ $0$-Zeile
|
||||
- $(LNot(x)_0 + LNot(x)_1) dot (x_0 + x_1) dot...$\
|
||||
- $1 tilde.equiv overline(x_0)$, $0 tilde.equiv x_0$
|
||||
|
||||
Kanonische: In jedem Term müssen alle enthalten sein.
|
||||
|
||||
*KDNF:* Kanonische DNF\
|
||||
*KKNF:* Kanonische KNF
|
||||
|
||||
$f(underline(x)) -->$ *KKNF* / *KDNF* mit Boolsche Expansion
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorOptimierung)[
|
||||
#subHeading(fill: colorOptimierung)[Quine McCluskey]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorRealsierung)[
|
||||
#subHeading(fill: colorRealsierung)[NMOS/PMOS]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorRealsierung)[
|
||||
#subHeading(fill: colorRealsierung)[CMOS]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Timing]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Latches und Register]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Pipeline/Parallele Verarbeitungseinheiten]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorState)[
|
||||
#subHeading(fill: colorState)[Zustandsautomaten]
|
||||
]
|
||||
]
|
||||
@@ -2,7 +2,9 @@
|
||||
#import "@preview/mannot:0.3.1"
|
||||
#import "@preview/zap:0.5.0"
|
||||
|
||||
#set math.mat(delim: "[")
|
||||
#show math.equation.where(block: true): it => math.inline(it)
|
||||
#set math.mat(delim: "[")
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
@@ -65,7 +67,7 @@
|
||||
|
||||
Knotenzidenzmatrix $bold(A)$
|
||||
|
||||
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
|
||||
$bold(A) : bold(i_k) -> text("Knotenstrombilanz") = 0$ \
|
||||
$bold(A^T) : bold(u_b)-> bold(u_k)$
|
||||
$
|
||||
bold(A) = quad mannot.mark(mat(
|
||||
@@ -81,6 +83,9 @@
|
||||
a in {-1, 0, 1}
|
||||
$
|
||||
|
||||
$-1$: In Knoten rein \
|
||||
$1$: Aus Knoten raus \
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
Mascheninsidenz Matrix $bold(B)$\
|
||||
@@ -103,6 +108,9 @@
|
||||
b in {-1, 0, 1}
|
||||
$
|
||||
|
||||
$-1$: Gegen Maschenrichtung
|
||||
$1$: In Maschenrichtung
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
*KCL und KVL* \
|
||||
@@ -120,6 +128,10 @@
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
|
||||
KCLs: $n-1$\
|
||||
KVLs: $b-(n-1)$
|
||||
|
||||
Baum einzeichnen (Keine Schleifen!)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
@@ -129,19 +141,16 @@
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#show table.cell: it => pad(),
|
||||
|
||||
#table(
|
||||
columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
[In $->$], $bold(R)$, $bold(G)$, $bold(H)$, $bold(H')$, $bold(A)$, $bold(A')$,
|
||||
|
||||
|
||||
Reference in New Issue
Block a user