|
|
|
|
@@ -73,6 +73,42 @@
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorAllgemein)[
|
|
|
|
|
#subHeading(fill: colorAllgemein)[Trigonometrie]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorAllgemein)[
|
|
|
|
|
#table(
|
|
|
|
|
inset: 1.5mm,
|
|
|
|
|
stroke: (thickness: 0.2mm),
|
|
|
|
|
columns: 4,
|
|
|
|
|
table.header(
|
|
|
|
|
[x], [deg], [cos(x)], [sin(x)]
|
|
|
|
|
),
|
|
|
|
|
[$0$], [$0°$], [$1$], [$0$],
|
|
|
|
|
[$pi/6$], [$30°$], [$sqrt(3)/2$], [$1/2$],
|
|
|
|
|
[$pi/4$], [$45°$], [$sqrt(2)/2$], [$sqrt(2)/2$],
|
|
|
|
|
[$pi/3$], [$60°$], [$1/2$], [$sqrt(3)/2$],
|
|
|
|
|
[$pi/2$], [$90°$], [$0$], [$1$],
|
|
|
|
|
[$2/3pi$], [$120°$], [$-1/2$], [$sqrt(3)/2$],
|
|
|
|
|
[$3/4pi$], [$135°$], [$-sqrt(2)/2$], [$sqrt(2)/2$],
|
|
|
|
|
[$5/6pi$], [$150°$], [$-sqrt(3)/2$], [$1/2$],
|
|
|
|
|
[$pi$], [$180°$], [$-1$], [$0$],
|
|
|
|
|
[$3/2pi$], [$270°$], [$0$], [$-1$],
|
|
|
|
|
[$2pi$], [$360°$], [$1$], [$0$]
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorAllgemein)[
|
|
|
|
|
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
|
|
|
|
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
|
|
|
|
|
|
|
|
|
$z^n = r^n dot e^(phi i dot n) = r^n (cos(n phi) + i sin(n phi))$
|
|
|
|
|
|
|
|
|
|
#grid(
|
|
|
|
|
columns: (1fr, 1fr),
|
|
|
|
|
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
|
|
|
|
|
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
|
|
|
|
|
)
|
|
|
|
|
#subHeading(fill: colorAllgemein)[Trigonmetrie]
|
|
|
|
|
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
|
|
|
|
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
|
|
|
|
@@ -88,7 +124,7 @@
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
$cos^2(x) + sin^2(x) = 1$
|
|
|
|
|
|
|
|
|
|
git config pull.rebase falsegit config pull.rebase false
|
|
|
|
|
#grid(
|
|
|
|
|
gutter: 5mm,
|
|
|
|
|
columns: (auto, auto),
|
|
|
|
|
@@ -199,11 +235,16 @@
|
|
|
|
|
row-gutter: 2mm,
|
|
|
|
|
align: bottom,
|
|
|
|
|
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
|
|
|
|
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
|
|
|
|
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
|
|
|
|
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
|
|
|
|
|
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
|
|
|
|
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
|
|
|
|
[],
|
|
|
|
|
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
|
|
|
|
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
|
|
|
|
|
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
|
|
|
|
|
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
|
|
|
|
|
0 &abs(q),
|
|
|
|
|
1 &q = 1,
|
|
|
|
|
plus.minus infinity &q < -1,
|
|
|
|
|
plus infinity #h(5mm) &q > 1
|
|
|
|
|
) $)), []
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
@@ -274,6 +315,20 @@
|
|
|
|
|
#subHeading(fill: colorReihen)[Potenzreihen]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorReihen)[
|
|
|
|
|
#subHeading(fill: colorReihen)[Bekannte Reihen]
|
|
|
|
|
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
|
|
|
|
|
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
|
|
|
|
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
|
|
|
|
|
|
|
|
|
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
|
|
|
|
|
|
|
|
|
|
*Andere*
|
|
|
|
|
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
|
|
|
|
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#colbreak()
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorAbleitung)[
|
|
|
|
|
#subHeading(fill: colorAbleitung)[Funktionen]
|
|
|
|
|
@@ -413,4 +468,52 @@
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
#colbreak()
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#pagebreak()
|
|
|
|
|
|
|
|
|
|
== Folgen in $CC$
|
|
|
|
|
|
|
|
|
|
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
|
|
|
|
|
|
|
|
|
|
Alle folgen regelen gelten
|
|
|
|
|
|
|
|
|
|
Complexe Folge kann man in Realteil und Imag zerlegen
|
|
|
|
|
|
|
|
|
|
z.B.
|
|
|
|
|
|
|
|
|
|
$z_n = z^n z in CC$
|
|
|
|
|
|
|
|
|
|
$z = abs(z) dot e^(i phi) = abs(z)^n$
|
|
|
|
|
|
|
|
|
|
== Reihen in $CC$
|
|
|
|
|
|
|
|
|
|
Fast alles gilt auch.
|
|
|
|
|
|
|
|
|
|
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
|
|
|
|
|
|
|
|
|
|
Geometrische Reihe gilt.
|
|
|
|
|
|
|
|
|
|
Exponential funktion
|
|
|
|
|
|
|
|
|
|
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
|
|
|
|
|
|
|
|
|
|
Vorsicht: $(b^a)^n = b^(a dot c)$
|
|
|
|
|
|
|
|
|
|
Potenzreihen: Eine Fn der form:
|
|
|
|
|
|
|
|
|
|
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
|
|
|
|
|
|
|
|
|
|
=== Satz
|
|
|
|
|
|
|
|
|
|
Konvergenz Radius $R = [0, infinity)$$$
|
|
|
|
|
|
|
|
|
|
1. $R = 0$ Konvergiet nur bei $z = 0$
|
|
|
|
|
|
|
|
|
|
2. $R in R : cases(
|
|
|
|
|
z in CC &abs(z - z_0) < R &: "abs Konvergent",
|
|
|
|
|
z in CC &abs(z - z_0) = R &: "keine Ahnung",
|
|
|
|
|
z in CC &abs(z - z_0) > R &: "Divergent"
|
|
|
|
|
)$
|
|
|
|
|
|
|
|
|
|
$ R = limsup_(n -> infinity) $
|