Something
This commit is contained in:
@@ -202,8 +202,6 @@
|
||||
|
||||
1. $e^x = sum_(n=0)^infinity (x^n)/(n!)$
|
||||
2. $ln(x) = sum_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
3. $sin(x) = sum_(n=0)^infinity $
|
||||
4. $cos(x) = sum_(n=0)^infinity $
|
||||
])
|
||||
)
|
||||
|
||||
|
||||
@@ -87,6 +87,47 @@
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Trigonometrie]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Sinus-Tabel]
|
||||
|
||||
#table(
|
||||
inset: 1.5mm,
|
||||
stroke: (thickness: 0.2mm),
|
||||
columns: 4,
|
||||
table.header(
|
||||
[x], [deg], [cos(x)], [sin(x)]
|
||||
),
|
||||
[$0$], [$0°$], [$1$], [$0$],
|
||||
[$pi/6$], [$30°$], [$sqrt(3)/2$], [$1/2$],
|
||||
[$pi/4$], [$45°$], [$sqrt(2)/2$], [$sqrt(2)/2$],
|
||||
[$pi/3$], [$60°$], [$1/2$], [$sqrt(3)/2$],
|
||||
[$pi/2$], [$90°$], [$0$], [$1$],
|
||||
[$2/3pi$], [$120°$], [$-1/2$], [$sqrt(3)/2$],
|
||||
[$3/4pi$], [$135°$], [$-sqrt(2)/2$], [$sqrt(2)/2$],
|
||||
[$5/6pi$], [$150°$], [$-sqrt(3)/2$], [$1/2$],
|
||||
[$pi$], [$180°$], [$-1$], [$0$],
|
||||
[$3/2pi$], [$270°$], [$0$], [$-1$],
|
||||
[$2pi$], [$360°$], [$1$], [$0$]
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
||||
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
||||
|
||||
$z^n = r^n dot e^(phi i dot n) = r^n (cos(n phi) + i sin(n phi))$
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen]
|
||||
$ lim_(x -> infinity) a_n $
|
||||
@@ -170,11 +211,16 @@
|
||||
row-gutter: 2mm,
|
||||
align: bottom,
|
||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
||||
[],
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
|
||||
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
|
||||
0 &abs(q),
|
||||
1 &q = 1,
|
||||
plus.minus infinity &q < -1,
|
||||
plus infinity #h(5mm) &q > 1
|
||||
) $)), []
|
||||
)
|
||||
]
|
||||
|
||||
@@ -195,6 +241,19 @@
|
||||
#subHeading(fill: colorReihen)[Potenzreihen]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Bekannte Reihen]
|
||||
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
|
||||
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
|
||||
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
*Andere*
|
||||
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
@@ -278,4 +337,52 @@
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
]
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Folgen in $CC$
|
||||
|
||||
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
|
||||
|
||||
Alle folgen regelen gelten
|
||||
|
||||
Complexe Folge kann man in Realteil und Imag zerlegen
|
||||
|
||||
z.B.
|
||||
|
||||
$z_n = z^n z in CC$
|
||||
|
||||
$z = abs(z) dot e^(i phi) = abs(z)^n$
|
||||
|
||||
== Reihen in $CC$
|
||||
|
||||
Fast alles gilt auch.
|
||||
|
||||
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
|
||||
|
||||
Geometrische Reihe gilt.
|
||||
|
||||
Exponential funktion
|
||||
|
||||
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
|
||||
|
||||
Vorsicht: $(b^a)^n = b^(a dot c)$
|
||||
|
||||
Potenzreihen: Eine Fn der form:
|
||||
|
||||
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
|
||||
|
||||
=== Satz
|
||||
|
||||
Konvergenz Radius $R = [0, infinity)$$$
|
||||
|
||||
1. $R = 0$ Konvergiet nur bei $z = 0$
|
||||
|
||||
2. $R in R : cases(
|
||||
z in CC &abs(z - z_0) < R &: "abs Konvergent",
|
||||
z in CC &abs(z - z_0) = R &: "keine Ahnung",
|
||||
z in CC &abs(z - z_0) > R &: "Divergent"
|
||||
)$
|
||||
|
||||
$ R = limsup_(n -> infinity) $
|
||||
Reference in New Issue
Block a user