Compare commits

..

3 Commits

Author SHA1 Message Date
alexander
cccbced541 Merge branch 'main' of gitea.mintcalc.com:alexander/TUM-Formelsammlungen
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Failing after 10s
2026-01-13 10:51:09 +01:00
alexander
bd04181c27 Something 2026-01-13 10:49:10 +01:00
alexander
a69fb03528 Added to release 2026-01-13 10:49:02 +01:00
3 changed files with 121 additions and 9 deletions

View File

@@ -51,3 +51,14 @@ jobs:
name: typst-pdfs
path: ${{ env.BUILD_DIR }}/*.pdf
if-no-files-found: warn
- name: Create Gitea Release
uses: softprops/action-gh-release@v1
with:
tag_name: ${{ steps.tag.outputs.tag }}
name: Typst PDFs ${{ steps.tag.outputs.tag }}
body: |
Automated release of Typst-generated PDFs.
Commit: ${{ github.sha }}
files: ${{ env.BUILD_DIR }}/*.pdf

View File

@@ -202,8 +202,6 @@
1. $e^x = sum_(n=0)^infinity (x^n)/(n!)$
2. $ln(x) = sum_(n=0)^infinity (-1)^n x^(n+1)$
3. $sin(x) = sum_(n=0)^infinity $
4. $cos(x) = sum_(n=0)^infinity $
])
)

View File

@@ -73,6 +73,42 @@
]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Trigonometrie]
]
#bgBlock(fill: colorAllgemein)[
#table(
inset: 1.5mm,
stroke: (thickness: 0.2mm),
columns: 4,
table.header(
[x], [deg], [cos(x)], [sin(x)]
),
[$0$], [$0°$], [$1$], [$0$],
[$pi/6$], [$30°$], [$sqrt(3)/2$], [$1/2$],
[$pi/4$], [$45°$], [$sqrt(2)/2$], [$sqrt(2)/2$],
[$pi/3$], [$60°$], [$1/2$], [$sqrt(3)/2$],
[$pi/2$], [$90°$], [$0$], [$1$],
[$2/3pi$], [$120°$], [$-1/2$], [$sqrt(3)/2$],
[$3/4pi$], [$135°$], [$-sqrt(2)/2$], [$sqrt(2)/2$],
[$5/6pi$], [$150°$], [$-sqrt(3)/2$], [$1/2$],
[$pi$], [$180°$], [$-1$], [$0$],
[$3/2pi$], [$270°$], [$0$], [$-1$],
[$2pi$], [$360°$], [$1$], [$0$]
)
]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
$z^n = r^n dot e^(phi i dot n) = r^n (cos(n phi) + i sin(n phi))$
#grid(
columns: (1fr, 1fr),
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
)
#subHeading(fill: colorAllgemein)[Trigonmetrie]
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
@@ -88,7 +124,7 @@
)
$cos^2(x) + sin^2(x) = 1$
git config pull.rebase falsegit config pull.rebase false
#grid(
gutter: 5mm,
columns: (auto, auto),
@@ -199,11 +235,16 @@
row-gutter: 2mm,
align: bottom,
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
[],
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
0 &abs(q),
1 &q = 1,
plus.minus infinity &q < -1,
plus infinity #h(5mm) &q > 1
) $)), []
)
]
@@ -274,6 +315,20 @@
#subHeading(fill: colorReihen)[Potenzreihen]
]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Bekannte Reihen]
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
*Andere*
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
]
#colbreak()
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Funktionen]
@@ -414,3 +469,51 @@
#colbreak()
]
#pagebreak()
== Folgen in $CC$
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
Alle folgen regelen gelten
Complexe Folge kann man in Realteil und Imag zerlegen
z.B.
$z_n = z^n z in CC$
$z = abs(z) dot e^(i phi) = abs(z)^n$
== Reihen in $CC$
Fast alles gilt auch.
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
Geometrische Reihe gilt.
Exponential funktion
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
Vorsicht: $(b^a)^n = b^(a dot c)$
Potenzreihen: Eine Fn der form:
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
=== Satz
Konvergenz Radius $R = [0, infinity)$$$
1. $R = 0$ Konvergiet nur bei $z = 0$
2. $R in R : cases(
z in CC &abs(z - z_0) < R &: "abs Konvergent",
z in CC &abs(z - z_0) = R &: "keine Ahnung",
z in CC &abs(z - z_0) > R &: "Divergent"
)$
$ R = limsup_(n -> infinity) $