Compare commits
2 Commits
4093cde50a
...
7db8bd3ce7
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7db8bd3ce7 | ||
|
|
f53eaa776e |
@@ -217,6 +217,8 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
|
||||
Kann auch Reksuive angewendet werden!
|
||||
|
||||
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
@@ -349,7 +351,8 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
- *Monotonie* \
|
||||
$x in I : f'(x) < 0$: Streng monoton steigended \
|
||||
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
||||
(Analog bei (streng ) steigned/fallended)
|
||||
(Analog bei (streng ) steigned/fallended) \
|
||||
Konstante Funktion bei $f'(x) = 0$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
@@ -472,20 +475,36 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Wenn $f(x)$ stetig und monoton $=>$ intbar
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Ungleichung:* \
|
||||
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
||||
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
||||
|
||||
*Hauptsatz der Integralrechung*
|
||||
|
||||
Sei $f: [a,b] -> RR$ stetig
|
||||
|
||||
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||
$=> F'(x) = f(x) forall x in [a,b]$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
$integral_a^b u(x) dot v'(x) d x = [u(x)v(x)]_a^b - integral_a^b u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
1. Ersetzung: $t := g(x)$
|
||||
2. Umformen:
|
||||
$(d y)/(d x) = g'(x)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user