added some stuff to analysis
This commit is contained in:
@@ -215,6 +215,8 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
|||||||
|
|
||||||
Kann auch Reksuive angewendet werden!
|
Kann auch Reksuive angewendet werden!
|
||||||
|
|
||||||
|
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||||
|
|
||||||
]
|
]
|
||||||
|
|
||||||
#bgBlock(fill: colorFolgen)[
|
#bgBlock(fill: colorFolgen)[
|
||||||
@@ -347,7 +349,8 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
|||||||
- *Monotonie* \
|
- *Monotonie* \
|
||||||
$x in I : f'(x) < 0$: Streng monoton steigended \
|
$x in I : f'(x) < 0$: Streng monoton steigended \
|
||||||
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
||||||
(Analog bei (streng ) steigned/fallended)
|
(Analog bei (streng ) steigned/fallended) \
|
||||||
|
Konstante Funktion bei $f'(x) = 0$
|
||||||
]
|
]
|
||||||
|
|
||||||
#bgBlock(fill: colorAbleitung)[
|
#bgBlock(fill: colorAbleitung)[
|
||||||
@@ -470,20 +473,36 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
|||||||
#bgBlock(fill: colorIntegral, [
|
#bgBlock(fill: colorIntegral, [
|
||||||
#subHeading(fill: colorIntegral, [Integral])
|
#subHeading(fill: colorIntegral, [Integral])
|
||||||
|
|
||||||
|
Wenn $f(x)$ stetig und monoton $=>$ intbar
|
||||||
|
|
||||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||||
|
|
||||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||||
|
|
||||||
|
*Ungleichung:* \
|
||||||
|
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
||||||
|
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
||||||
|
|
||||||
|
*Hauptsatz der Integralrechung*
|
||||||
|
|
||||||
|
Sei $f: [a,b] -> RR$ stetig
|
||||||
|
|
||||||
|
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||||
|
$=> F'(x) = f(x) forall x in [a,b]$
|
||||||
|
|
||||||
*Partial Integration*
|
*Partial Integration*
|
||||||
|
|
||||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||||
|
|
||||||
|
$integral_a^b u(x) dot v'(x) d x = [u(x)v(x)]_a^b - integral_a^b u'(x) dot v(x)$
|
||||||
|
|
||||||
*Subsitution*
|
*Subsitution*
|
||||||
|
|
||||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||||
|
|
||||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
1. Ersetzung: $t := g(x)$
|
||||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
2. Umformen:
|
||||||
|
$(d y)/(d x) = g'(x)$
|
||||||
3. $x$-kürzen sich weg
|
3. $x$-kürzen sich weg
|
||||||
])
|
])
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user