Something

This commit is contained in:
alexander
2026-01-13 10:49:10 +01:00
parent a69fb03528
commit bd04181c27
2 changed files with 113 additions and 8 deletions

View File

@@ -202,8 +202,6 @@
1. $e^x = sum_(n=0)^infinity (x^n)/(n!)$ 1. $e^x = sum_(n=0)^infinity (x^n)/(n!)$
2. $ln(x) = sum_(n=0)^infinity (-1)^n x^(n+1)$ 2. $ln(x) = sum_(n=0)^infinity (-1)^n x^(n+1)$
3. $sin(x) = sum_(n=0)^infinity $
4. $cos(x) = sum_(n=0)^infinity $
]) ])
) )

View File

@@ -87,6 +87,47 @@
) )
] ]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Trigonometrie]
]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Sinus-Tabel]
#table(
inset: 1.5mm,
stroke: (thickness: 0.2mm),
columns: 4,
table.header(
[x], [deg], [cos(x)], [sin(x)]
),
[$0$], [$0°$], [$1$], [$0$],
[$pi/6$], [$30°$], [$sqrt(3)/2$], [$1/2$],
[$pi/4$], [$45°$], [$sqrt(2)/2$], [$sqrt(2)/2$],
[$pi/3$], [$60°$], [$1/2$], [$sqrt(3)/2$],
[$pi/2$], [$90°$], [$0$], [$1$],
[$2/3pi$], [$120°$], [$-1/2$], [$sqrt(3)/2$],
[$3/4pi$], [$135°$], [$-sqrt(2)/2$], [$sqrt(2)/2$],
[$5/6pi$], [$150°$], [$-sqrt(3)/2$], [$1/2$],
[$pi$], [$180°$], [$-1$], [$0$],
[$3/2pi$], [$270°$], [$0$], [$-1$],
[$2pi$], [$360°$], [$1$], [$0$]
)
]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
$z^n = r^n dot e^(phi i dot n) = r^n (cos(n phi) + i sin(n phi))$
#grid(
columns: (1fr, 1fr),
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
)
]
#bgBlock(fill: colorFolgen)[ #bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen] #subHeading(fill: colorFolgen)[Folgen]
$ lim_(x -> infinity) a_n $ $ lim_(x -> infinity) a_n $
@@ -170,11 +211,16 @@
row-gutter: 2mm, row-gutter: 2mm,
align: bottom, align: bottom,
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $), MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
MathAlignLeft($ lim_(n->infinity) q^n = 0 $), [],
MathAlignLeft($ lim_(n->infinity) q^n = 0 $), MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [], grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [], MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)) grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
0 &abs(q),
1 &q = 1,
plus.minus infinity &q < -1,
plus infinity #h(5mm) &q > 1
) $)), []
) )
] ]
@@ -195,6 +241,19 @@
#subHeading(fill: colorReihen)[Potenzreihen] #subHeading(fill: colorReihen)[Potenzreihen]
] ]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Bekannte Reihen]
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
*Andere*
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
]
#colbreak() #colbreak()
#bgBlock(fill: colorAbleitung)[ #bgBlock(fill: colorAbleitung)[
@@ -279,3 +338,51 @@
#colbreak() #colbreak()
] ]
#pagebreak()
== Folgen in $CC$
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
Alle folgen regelen gelten
Complexe Folge kann man in Realteil und Imag zerlegen
z.B.
$z_n = z^n z in CC$
$z = abs(z) dot e^(i phi) = abs(z)^n$
== Reihen in $CC$
Fast alles gilt auch.
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
Geometrische Reihe gilt.
Exponential funktion
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
Vorsicht: $(b^a)^n = b^(a dot c)$
Potenzreihen: Eine Fn der form:
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
=== Satz
Konvergenz Radius $R = [0, infinity)$$$
1. $R = 0$ Konvergiet nur bei $z = 0$
2. $R in R : cases(
z in CC &abs(z - z_0) < R &: "abs Konvergent",
z in CC &abs(z - z_0) = R &: "keine Ahnung",
z in CC &abs(z - z_0) > R &: "Divergent"
)$
$ R = limsup_(n -> infinity) $