Moved shit around
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Failing after 11s
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Failing after 11s
This commit is contained in:
@@ -1,259 +0,0 @@
|
||||
#import "@preview/biceps:0.0.1": *
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
#import "lib/styles.typ": *
|
||||
#import "lib/common.typ": *
|
||||
|
||||
#show: stdTemplate
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
stdBlock([
|
||||
== #hlHeading([Trig Identitäten])
|
||||
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
|
||||
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||
$sin(2x) = 2sin(x)cos(x)$
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos^2(x) = (1 + cos(2x))/2$],
|
||||
[$sin^2(x) = (1 - cos(2x))/2$]
|
||||
)
|
||||
|
||||
$cos^2(x) + sin^2(x) = 1$
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos(-x) = cos(x)$],
|
||||
[$sin(-x) = -sin(x)$],
|
||||
)
|
||||
|
||||
Subsitution mit Hilfsvariable
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
row-gutter: 3mm,
|
||||
columns: (auto, auto),
|
||||
[$tan(x)=sin(x)/cos(x)$],
|
||||
[$cot(x)=cos(x)/sin(x)$],
|
||||
[$tan(x)=-cot(x + pi/2)$],
|
||||
[$cot(x)=-tan(x + pi/2)$],
|
||||
[$cos(x - pi/2) = sin(x)$],
|
||||
[$sin(x + pi/2) = cos(x)$],
|
||||
)
|
||||
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
|
||||
|
||||
Für $x in [-1, 1]$ \
|
||||
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
|
||||
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
||||
])
|
||||
)
|
||||
#place(
|
||||
top + left,
|
||||
dx: 6.5cm,
|
||||
sinTable
|
||||
)
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
dx: 0cm,
|
||||
dy: 8cm,
|
||||
stdBlock([
|
||||
#grid(
|
||||
columns:(auto, auto),
|
||||
gutter: 1mm,
|
||||
[
|
||||
== #hlHeading([Folgen])
|
||||
$ lim_(x->infinity) a_n $
|
||||
- *Beschränkt*: $exists k in RR$ so dass $abs(a_n) <= k$
|
||||
- $epsilon$-Interval: $x in (a - epsilon, a + epsilon) <=> abs(x - a) < epsilon$
|
||||
- *Beweiß:* Induktion
|
||||
- Hat min. eine konvergent Teilfolge
|
||||
|
||||
- *Monoton: steigen/fallend* $a_(n+1) gt.eq.lt a_n$
|
||||
- *Beweisen:* Induktion mit \ $a_(n+1) gt.eq.lt a_n$ oder $a_(n+1) / a_(n) gt.lt 1 $ oder Umformung
|
||||
|
||||
- *Konvergent*:
|
||||
- Es gibt $forall epsilon > 0$ eine Index $n_epsilon in NN$ sodass \ $abs(a_n - a) < epsilon space forall n > n_epsilon$
|
||||
- Divergent $-> infinity$, wenn $forall k in RR : exists space a_n > k$
|
||||
- Divergent $-> -infinity$, wenn $forall k in RR : exists space a_n < k$
|
||||
- Genzwert is eindeutig
|
||||
|
||||
- *Konvergenz $a_n -> a$ $<=>$ beschränkt UND monoton*
|
||||
- $<=>$ Alle Teilefolgen konvergent zu $a$
|
||||
- Wenn Häufungspunk $eq.not$ $=>$ divergent
|
||||
- Sandwitch-Theorem
|
||||
|
||||
- *Cauchyfolge*
|
||||
Ein folge die diese Eigenschaft hat: \
|
||||
$forall epsilon > 0 space exists N_epsilon in NN space forall m,n > N_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $<=>$ Konvergenz
|
||||
],
|
||||
grid.vline(stroke: 0.1mm + black, position: start),
|
||||
pad([
|
||||
=== Grenzwert Finden:
|
||||
- "Bottom up" von Bekannten Ausdrücken
|
||||
- Fixpunk Gleösenichung l $a = f(a)$ für $f(a_n)$
|
||||
- Bernoulli-Ungleichung für $(a_n)^n$ \
|
||||
$(1 + a)^n >= 1 + n a$ für $a >= -1$
|
||||
- #MathAlignLeft($1 + u <= 1/(1-u), u < 1$)
|
||||
|
||||
Für Konvergent Folgen:
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
align: bottom,
|
||||
gutter: 2mm,
|
||||
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
|
||||
grid.cell(
|
||||
rowspan: 2,
|
||||
[$ lim_(n->infinity) (a_n / b_n) = a / b $],
|
||||
),
|
||||
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
|
||||
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
|
||||
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
||||
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
||||
)
|
||||
|
||||
== Spezifische Folgen
|
||||
#grid(
|
||||
columns: (auto, auto, auto),
|
||||
column-gutter: 4mm,
|
||||
row-gutter: 2mm,
|
||||
align: bottom,
|
||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
||||
)
|
||||
|
||||
== Teilfolgen
|
||||
- Indizies müssen immer streng monoton \
|
||||
wachsend sein. (z.B. is $a_1, a_1, a_2, a_2$ KEIN\
|
||||
Teilfolge von $a_n$)
|
||||
- Beschränkte $a_n$ $=>$ *min eine* \
|
||||
konvergent Teilfolge
|
||||
- Konvergent $a_n$ $=>$ *genau ein* Häufungspunkt
|
||||
|
||||
|
||||
], left: 1mm)
|
||||
)
|
||||
])
|
||||
)
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
dx: 13cm,
|
||||
dy: 0cm,
|
||||
stdBlock([
|
||||
== #hlHeading([Reihen])
|
||||
|
||||
Wenn $sum_(n=1)^infinity a_n$ konverigiert $=>$ $a_n$ Nullfolge \
|
||||
Wenn $a_n$ keine Nullfolge $=>$ $sum_(n=1)^infinity$ divergent
|
||||
|
||||
=== Absolute Konvergenz
|
||||
Bedeuted $sum_(n=1)^infinity abs(a_n) = a ==> sum_(n=1)^infinity a_n$ konvergent
|
||||
|
||||
$sum_(n=1)^infinity abs(a_n)$ beschränkt + (monoto steigended) $= sum_(n=1)^infinity abs(a_n)$
|
||||
|
||||
=== Partialsummen
|
||||
Sind die Partialsummen von $sum_(k=1)^infinity abs(a)$ beschränkt\
|
||||
$==>$ _Absolute Konvergent_
|
||||
|
||||
=== Cauchy-Kriterium
|
||||
konvergent wenn $forall epsilon$ existiert ein $n_epsilon in NN$ \
|
||||
sodass $abs(s_n - s_m) = abs(sum_(k=m+1)^(n)) < epsilon space$ \
|
||||
$forall n_epsilon < m < n $
|
||||
|
||||
=== Leibnitzkriterium
|
||||
Wenn monton fallend, $a_n >= 0$, Null folge dann
|
||||
|
||||
$sum_(n=1)^infinity (-1)^n dot a_n$ konvergent
|
||||
|
||||
=== Majorandenkriterium
|
||||
Seien $a_n, b_n$ mit $abs(a_n) <= b_n space (forall n > N, N in NN)$
|
||||
1. $sum_(n=0)^infinity b_n$ konvergent $==> sum_(n=0)^infinity abs(a_n)$ konvergent \
|
||||
Suche $b_n$ für Konvergenz
|
||||
2. $sum_(n=0)^infinity abs(a_n)$ divergent $==> sum_(n=0)^infinity b_n$ divergent \
|
||||
Suche $abs(a_n)$ für Divergenz
|
||||
|
||||
Nützlich:
|
||||
- Dreiecksungleichung
|
||||
- $forall space n in NN$ \
|
||||
$exists space k,q in RR$ \
|
||||
für $q > 1$: $n^k <= q^n$ ab einem bestimmten.
|
||||
|
||||
=== Quotientenkriterium und Wurzelkriterium
|
||||
1. $rho = lim_(n -> infinity) abs((a_(n+1))/(a_n)) $
|
||||
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
|
||||
(Stärker, am besten für $(...)^n$)
|
||||
|
||||
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||
=== Spezifische Reihen
|
||||
Geometrische Reihe: $sum_(n=0)^infinity q^n$
|
||||
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
Harmonische Reihe: $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
1. $e^x = sum_(n=0)^infinity (x^n)/(n!)$
|
||||
2. $ln(x) = sum_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
])
|
||||
)
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
dx: 0cm,
|
||||
dy: 20cm,
|
||||
stdBlock([
|
||||
== Kriterien Übersich für Reihen $sum_(n=0)^infinity a_n$
|
||||
#line()
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
gutter: 3mm,
|
||||
[
|
||||
*Notwendinge Kriterien*\
|
||||
($not$ Bedingung $=>$ div.)
|
||||
- Cauchy-Kriterium
|
||||
- #MathAlignLeft($ lim_(n->infinity)a_n = 0 $)
|
||||
- Konvergenz der Partialsummen
|
||||
- Beschränktheit der Partialsummen
|
||||
],
|
||||
[
|
||||
*Hinreichende Kriterien* \
|
||||
(Bedingung $=>$ konv.)
|
||||
- Absolute Konvergenz
|
||||
- Leibnitz-Kroterium
|
||||
- Beschränktheit der Partialsummen
|
||||
- Quotienten-/Wurzel-kriterium
|
||||
- Majorandenkriterium
|
||||
]
|
||||
)
|
||||
])
|
||||
)
|
||||
|
||||
#pagebreak()
|
||||
#place(
|
||||
left+top,
|
||||
dx: 0cm,
|
||||
dy: 0cm,
|
||||
stdBlock([
|
||||
== #hlHeading([Funktionen])
|
||||
=== Stetigkeit
|
||||
Stetig an der stelle $x_0$ wenn: $ lim_(x->x_0+) f(x) = lim_(x->x_0-) f(x) =f(x_0) $
|
||||
$f(x)$ muss nicht definiert sein an $x_0$
|
||||
=== Differenzierbar
|
||||
An der stelle $x_0$ wenn
|
||||
#MathAlignLeft($
|
||||
lim_(h -> 0) (f(x_0 + h)-f(x_0))/h =\
|
||||
lim_(h -> 0) (f(x_0 - h)-f(x_0))/h = f'(x)
|
||||
$)
|
||||
definiert ist
|
||||
|
||||
])
|
||||
)
|
||||
Reference in New Issue
Block a user