Finally added potenzreihen
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
This commit is contained in:
@@ -3,6 +3,7 @@
|
||||
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
#let lim = $limits("lim")$
|
||||
|
||||
#set text(7pt)
|
||||
|
||||
@@ -46,27 +47,48 @@
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Allgemeins]
|
||||
|
||||
*Dreiecksungleichung* \
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
|
||||
*Cauchy-Schwarz-Ungleichung*\
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
|
||||
*Geometrische Summenformel*\
|
||||
$sum_(k=1)^(n) k = (n(n+1))/2$ \
|
||||
*Bernoulli-Ungleichung* \
|
||||
$(1 + a)^n x in RR >= 1 + n a$ \
|
||||
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
|
||||
*Binomische Formel*\
|
||||
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Fakultäten* $0! = 1! = 1$ \
|
||||
*Gaußklammer*: \
|
||||
$floor(x) = text("floor")(x)$ \
|
||||
$ceil(x) = text("ceil")(x)$ \
|
||||
*Bekannte Werte* \
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
inset: 0mm,
|
||||
gutter: 2mm,
|
||||
[
|
||||
*Dreiecksungleichung* \
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
|
||||
],
|
||||
[
|
||||
*Cauchy-Schwarz-Ungleichung*\
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
|
||||
],
|
||||
[
|
||||
*Geometrische Summenformel*\
|
||||
$sum_(k=1)^(n) k = (n(n+1))/2$ \
|
||||
],
|
||||
[
|
||||
*Bernoulli-Ungleichung* \
|
||||
$(1 + a)^n x in RR >= 1 + n a$ \
|
||||
],
|
||||
[
|
||||
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
],
|
||||
[
|
||||
*Binomische Formel*\
|
||||
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
],
|
||||
[
|
||||
*Bekannte Werte* \
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
],
|
||||
[
|
||||
*Gaußklammer*: \
|
||||
$floor(x) = text("floor")(x)$ \
|
||||
$ceil(x) = text("ceil")(x)$ \
|
||||
],
|
||||
[
|
||||
*Fakultäten* $0! = 1! = 1$ \
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
@@ -81,12 +103,12 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
|
||||
grid.cell(
|
||||
colspan: 2,
|
||||
colspan: 1,
|
||||
align: center,
|
||||
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
),
|
||||
grid.cell(
|
||||
colspan: 2,
|
||||
colspan: 1,
|
||||
align: center,
|
||||
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
)
|
||||
@@ -96,7 +118,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Additionstheorem* \
|
||||
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$tan(x +y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
|
||||
$arctan(1/x) + arctan(x) = cases(
|
||||
x > 0 : pi/2,
|
||||
@@ -108,19 +130,13 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
$sin(2x) = 2sin(x)cos(x)$
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos^2(x) = (1 + cos(2x))/2$],
|
||||
[$sin^2(x) = (1 - cos(2x))/2$]
|
||||
)
|
||||
|
||||
$cos^2(x) + sin^2(x) = 1$
|
||||
git config pull.rebase falsegit config pull.rebase false
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos(-x) = cos(x)$],
|
||||
[$sin(-x) = -sin(x)$],
|
||||
gutter: 2mm,
|
||||
columns: (auto, auto, auto),
|
||||
$cos^2(x) = (1 + cos(2x))/2$,
|
||||
$sin^2(x) = (1 - cos(2x))/2$,
|
||||
$cos(-x) = cos(x)$,
|
||||
$sin(-x) = -sin(x)$,
|
||||
grid.cell(colspan: 2, $cos^2(x) + sin^2(x) = 1$)
|
||||
)
|
||||
|
||||
Subsitution mit Hilfsvariable
|
||||
@@ -134,7 +150,8 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
[$tan(x)=-cot(x + pi/2)$],
|
||||
[$cot(x)=-tan(x + pi/2)$],
|
||||
[$cos(x - pi/2) = sin(x)$],
|
||||
[$sin(x + pi/2) = cos(x)$],
|
||||
[$sin(x + pi/2) = cos(x)$],
|
||||
|
||||
)
|
||||
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
|
||||
|
||||
@@ -143,9 +160,9 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
||||
]
|
||||
|
||||
// Folgen Allgemein
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen]
|
||||
$ lim_(x -> infinity) a_n $
|
||||
|
||||
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
|
||||
- Beweiße: durch Induktion
|
||||
@@ -155,17 +172,14 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Monoton fallend/steigended*
|
||||
- Beweise: Induktion
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 1mm,
|
||||
row-gutter: 2mm,
|
||||
inset: 0.2mm,
|
||||
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
|
||||
[$ a_(n+1) <= a_(n) $],
|
||||
[$ a_(n+1) >= a_(n) $],
|
||||
[$ a_(n+1)/a_(n) < 1 $],
|
||||
[$ a_(n+1)/a_(n) > 1 $],
|
||||
[$ a_(n+1) <= a_(n), quad a_(n+1) >= a_(n) $],
|
||||
[$ a_(n+1)/a_(n) < 1, quad a_(n+1)/a_(n) > 1 $],
|
||||
)
|
||||
|
||||
*Konvergentz Allgemein*
|
||||
$ lim_(n -> infinity) a_n = a $
|
||||
$lim_(n -> infinity) a_n = a$
|
||||
|
||||
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \
|
||||
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
|
||||
@@ -177,31 +191,38 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Konvergentz Häufungspunkte*
|
||||
- $a_n -> a <=>$ Alle Teilfolgen $-> a$
|
||||
|
||||
*Konvergenz Beweißen*
|
||||
- Monoton UND Beschränkt $=>$ Konvergenz
|
||||
NICHT Umgekehert
|
||||
- (Cauchyfolge \
|
||||
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
|
||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $=>$ Konvergenz)
|
||||
- $a_n$ unbeschränkt $=>$ divergenz
|
||||
*Folgen in $CC$* (Alle Regeln von $RR$ gelten)\
|
||||
- $z_n in CC : lim z_n <=> lim abs(z_n) = 0$
|
||||
- Zerlegen in $a + b i$ oder $abs(z) dot e^(i phi)$
|
||||
]
|
||||
|
||||
// Folgen Strat
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
|
||||
- Von Bekannten Ausdrücken aufbauen
|
||||
- *Monoton UND Beschränkt $=>$ Konvergenz*
|
||||
- Fixpunk Gleichung: $a = f(a)$ \
|
||||
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
|
||||
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
|
||||
$(1 + a)^n >= 1 + n a$
|
||||
- Sandwitchtheorem:\
|
||||
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
|
||||
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
- Zwerlegen in Konvergente Teil folgen \
|
||||
(Vorallem bei $(-1)^n dot a_n$)
|
||||
- (Cauchyfolge \
|
||||
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
|
||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $=>$ Konvergenz)
|
||||
|
||||
|
||||
*Divergenz*
|
||||
- $a_n$ unbeschränkt $=>$ divergenz
|
||||
- Vergleichskriterium: \
|
||||
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
]
|
||||
|
||||
// L'Hospital
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[L'Hospital]
|
||||
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
|
||||
@@ -211,7 +232,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
Bendingungen:
|
||||
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
|
||||
2. $g'(x) != 0, x in (a,b)$
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ konveriert
|
||||
|
||||
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
|
||||
|
||||
@@ -220,8 +241,9 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||
]
|
||||
|
||||
// Bekannte Folgen
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Konvergent Folge Regeln]
|
||||
#subHeading(fill: colorFolgen)[Bekannte Folgen]
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
align: bottom,
|
||||
@@ -236,10 +258,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
||||
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Bekannte Folgen]
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
column-gutter: 4mm,
|
||||
@@ -258,6 +277,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
)
|
||||
]
|
||||
|
||||
// Teilfolgen
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Teilfolgen]
|
||||
$ a_k subset a_n space (text("z.B") k= 2n + 1) $
|
||||
@@ -267,6 +287,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
|
||||
]
|
||||
|
||||
// Reihen
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Reihen]
|
||||
$limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \
|
||||
@@ -304,12 +325,34 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
|
||||
|
||||
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||
|
||||
*Reihen in $CC$*
|
||||
- Alles
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Potenzreihen]
|
||||
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
column-gutter: 5mm,
|
||||
row-gutter: 1.5mm,
|
||||
|
||||
[*Konvergenzradius*], [$|z - z_0| < R : $ absolute Konvergenz],
|
||||
[], [$|z - z_0| = R : $ Keine Aussage],
|
||||
[], [$|z - z_0| > R : $ Divergent]
|
||||
)
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
$R = lim_(n->infinity) abs(a_n/(a_(n+1))) = 1/(lim_(n->infinity) root(n, abs(a_n)))$,
|
||||
$R = limits(liminf)_(n->infinity) abs(a_n/(a_(n+1))) = 1/(limits(limsup)_(n->infinity) root(n, abs(a_n)))$
|
||||
)
|
||||
|
||||
]
|
||||
|
||||
// Bekannte Reihen
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Bekannte Reihen]
|
||||
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
|
||||
@@ -317,19 +360,22 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
|
||||
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
*Binomische Reihe:*
|
||||
|
||||
*Reihendarstellungen*
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
gutter: 3mm,
|
||||
row-gutter: 2mm,
|
||||
row-gutter: 3mm,
|
||||
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
|
||||
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
|
||||
$sin(x) = limits(sum)_(n=0)^infinity $,
|
||||
$cos(x) = limits(sum)_(n=0)^infinity $
|
||||
$sin(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n+1))/((2n + 1)!)$,
|
||||
$cos(x) = limits(sum)_(n=0)^infinity (-1)^n (z^(2n))/((2n)!)$
|
||||
)
|
||||
]
|
||||
|
||||
// Ableitung
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Funktionen]
|
||||
|
||||
@@ -346,7 +392,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
injektiv UND Surjectiv $<=>$ Umkehrbar
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
// Funktions Sätze
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Funktionen Sätze]
|
||||
$f(x)$ diff'bar $=> f(x)$ stetig
|
||||
@@ -367,7 +413,8 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
|
||||
|
||||
- *Mittelwertsatz der Integralrechnung*\
|
||||
|
||||
$g -> RR "integrierbar," g(x)>= 0 forall x in [a,b]$\
|
||||
$exists xi in [a,b] : integral_a^b f(x)g(x) d x = f(xi) integral_a^b g(x) d x$
|
||||
|
||||
- *Satze von Rolle* \
|
||||
diffbar $x in (a,b)$\
|
||||
@@ -378,6 +425,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
|
||||
]
|
||||
|
||||
// Stetigkeit
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Stetigkeit]
|
||||
*Allgemein*
|
||||
@@ -419,6 +467,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
)
|
||||
]
|
||||
|
||||
// Ableitung
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Ableitung]
|
||||
*Differenzierbarkeit*
|
||||
@@ -453,6 +502,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
|
||||
],
|
||||
|
||||
// Ableitungstabelle
|
||||
#block([
|
||||
#set text(size: 10pt)
|
||||
#table(
|
||||
@@ -492,7 +542,7 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
[$op("artanH")(x)$], [$1/(1 - x^2)$],
|
||||
)
|
||||
])
|
||||
#colbreak()
|
||||
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
|
||||
|
||||
@@ -560,7 +610,6 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
Notwendig $f''(x) lt.gt 0$
|
||||
]
|
||||
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
@@ -614,7 +663,6 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
|
||||
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
|
||||
|
||||
|
||||
*Cauchy-Hauptwert*
|
||||
|
||||
$integral_(-infinity)^(+infinity) f(x)$ \
|
||||
@@ -662,53 +710,3 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
)
|
||||
])
|
||||
]
|
||||
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Folgen in $CC$
|
||||
|
||||
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
|
||||
|
||||
Alle folgen regelen gelten
|
||||
|
||||
Complexe Folge kann man in Realteil und Imag zerlegen
|
||||
|
||||
z.B.
|
||||
|
||||
$z_n = z^n z in CC$
|
||||
|
||||
$z = abs(z) dot e^(i phi) = abs(z)^n$
|
||||
|
||||
== Reihen in $CC$
|
||||
|
||||
Fast alles gilt auch.
|
||||
|
||||
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
|
||||
|
||||
Geometrische Reihe gilt.
|
||||
|
||||
Exponential funktion
|
||||
|
||||
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
|
||||
|
||||
Vorsicht: $(b^a)^n = b^(a dot c)$
|
||||
|
||||
Potenzreihen: Eine Fn der form:
|
||||
|
||||
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
|
||||
|
||||
=== Satz
|
||||
|
||||
Konvergenz Radius $R = [0, infinity)$$$
|
||||
|
||||
1. $R = 0$ Konvergiet nur bei $z = 0$
|
||||
|
||||
2. $R in R : cases(
|
||||
z in CC &abs(z - z_0) < R &: "abs Konvergent",
|
||||
z in CC &abs(z - z_0) = R &: "keine Ahnung",
|
||||
z in CC &abs(z - z_0) > R &: "Divergent"
|
||||
)$
|
||||
|
||||
$ R = limsup_(n -> infinity) $
|
||||
|
||||
|
||||
Reference in New Issue
Block a user