Added CT good to know sheet
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Has been cancelled
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Has been cancelled
This commit is contained in:
@@ -43,6 +43,11 @@ jobs:
|
|||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
run: typst compile --root src src/cheatsheets/Digitaltechnik.typ "build/sem1-Digitaltechnik.pdf"
|
run: typst compile --root src src/cheatsheets/Digitaltechnik.typ "build/sem1-Digitaltechnik.pdf"
|
||||||
|
|
||||||
|
- name: Compile CT
|
||||||
|
continue-on-error: true
|
||||||
|
run: typst compile --root src src/cheatsheets/CT.typ "build/sem1-Computertechnik.pdf"
|
||||||
|
|
||||||
|
|
||||||
- name: Create Gitea Release
|
- name: Create Gitea Release
|
||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
uses: akkuman/gitea-release-action@v1
|
uses: akkuman/gitea-release-action@v1
|
||||||
|
|||||||
47
src/cheatsheets/CT.typ
Normal file
47
src/cheatsheets/CT.typ
Normal file
@@ -0,0 +1,47 @@
|
|||||||
|
#import "../lib/styles.typ" : *
|
||||||
|
#import "../lib/common_rewrite.typ" : *
|
||||||
|
|
||||||
|
#set page(
|
||||||
|
paper: "a4",
|
||||||
|
margin: (
|
||||||
|
bottom: 10mm,
|
||||||
|
top: 5mm,
|
||||||
|
left: 5mm,
|
||||||
|
right: 5mm
|
||||||
|
),
|
||||||
|
flipped:true,
|
||||||
|
numbering: "— 1 —",
|
||||||
|
number-align: center
|
||||||
|
)
|
||||||
|
|
||||||
|
#set text(size: 8pt)
|
||||||
|
|
||||||
|
#place(top+center, scope: "parent", float: true, heading(
|
||||||
|
[LComputer Technik/Programmierpraktikum EI]
|
||||||
|
))
|
||||||
|
|
||||||
|
#let Allgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||||
|
#let colorProgramming = color.hsl(330.19deg, 100%, 68.43%)
|
||||||
|
#let colorNumberSystems = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||||
|
// #let colorVR = color.hsl(280deg, 92.13%, 75.1%)
|
||||||
|
// #let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||||
|
// #let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||||
|
|
||||||
|
|
||||||
|
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||||
|
#let MathAlignLeft(e) = {
|
||||||
|
align(left, block(e))
|
||||||
|
}
|
||||||
|
#columns(4, gutter: 2mm)[
|
||||||
|
#bgBlock(fill: colorNumberSystems)[
|
||||||
|
#subHeading(fill: colorNumberSystems)[ASCII Ranges]
|
||||||
|
|
||||||
|
#table(
|
||||||
|
columns: (1fr, 1fr, 1fr),
|
||||||
|
[Range], [Hex], [Bits],
|
||||||
|
[Lower Case], [$"0x41"..."0x5A"$], [$"XX0X XXXX"$ (bit 6)],
|
||||||
|
[Upper Case], [$"0x61"..."0x7A"$], [$"XX1X XXXX"$ (bit 6)],
|
||||||
|
[Ganz ASCII], [$"0x00"..."0x7F"$], [$"0XXX XXXX"$]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
]
|
||||||
@@ -332,31 +332,32 @@
|
|||||||
#subHeading(fill: colorMatrixVerfahren)[Diagonalisierung]
|
#subHeading(fill: colorMatrixVerfahren)[Diagonalisierung]
|
||||||
$A = R D R^(-1)$
|
$A = R D R^(-1)$
|
||||||
|
|
||||||
#grid(
|
*Rezept Diagonalisierung*
|
||||||
columns: (1fr, 1fr),
|
|
||||||
$D = mat(
|
1. EW bestimmen: $det(A - lambda I) = 0$ \
|
||||||
|
$=> chi_A = (lambda_1 - lambda)^(m 1) (lambda_2 - lambda)^(m 2) ...$
|
||||||
|
2. EV bestimmen: $spann(kern(A - lambda_i I))$: $r_0, r_1, ...$
|
||||||
|
3. \
|
||||||
|
#grid(columns: (1fr, 1fr),
|
||||||
|
[
|
||||||
|
Diagnoalmatrix: $D$
|
||||||
|
$mat(
|
||||||
lambda_1, 0, 0,...;
|
lambda_1, 0, 0,...;
|
||||||
0, lambda_1, 0, ...;
|
0, lambda_1, 0, ...;
|
||||||
0, 0, lambda_2, ...;
|
0, 0, lambda_2, ...;
|
||||||
dots.v, dots.v, dots.v, dots.down
|
dots.v, dots.v, dots.v, dots.down
|
||||||
)$,
|
)
|
||||||
|
$
|
||||||
$D^n = mat(
|
],
|
||||||
lambda_1^n, 0, 0,...;
|
[
|
||||||
0, lambda_1^n, 0, ...;
|
Basiswechselmatrix: $R$
|
||||||
0, 0, lambda_2^n, ...;
|
$mat(
|
||||||
dots.v, dots.v, dots.v, dots.down
|
|, | , ..., |;
|
||||||
|
r_0, r_1, ..., r_n;
|
||||||
|
|, |, ..., |
|
||||||
)$
|
)$
|
||||||
) \
|
]
|
||||||
|
)
|
||||||
*Rezept Diagonalisierung*
|
|
||||||
|
|
||||||
1. *EW* bestimmen
|
|
||||||
2. $chi_A$ bestimmen und in $(lambda_0 - lambda)^(n_0) dot (lambda_1 - lambda)^(n_1) ...$ Form bringen \
|
|
||||||
$chi_A$ nicht vollstandig zerfällt (in $RR$), $=>$ NICHT diagonalisierbar
|
|
||||||
3. *EV* bestimmen
|
|
||||||
4. $R = mat( bar, bar, ..; v_(lambda 0), v_(lambda 1), ...; bar, bar, ...)$
|
|
||||||
5. $R^(-1)$ bestimmen
|
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
@@ -368,31 +369,24 @@
|
|||||||
#bgBlock(fill: colorMatrixVerfahren)[
|
#bgBlock(fill: colorMatrixVerfahren)[
|
||||||
#subHeading(fill: colorMatrixVerfahren)[SVD]
|
#subHeading(fill: colorMatrixVerfahren)[SVD]
|
||||||
|
|
||||||
$A in RR^(m times n)$ zerlegbar in $A = U Sigma V^T$ \
|
$A in RR^(m times n)$ zerlegbar in $A = L S R^T$ \
|
||||||
|
|
||||||
|
|
||||||
$U in RR^(m times m)$ Orthogonal \
|
$L in RR^(m times m)$ Orthogonal \
|
||||||
$Sigma in RR^(m times n)$ Diagonal \
|
$S in RR^(m times n)$ Diagonal \
|
||||||
$V in RR^(n times n)$ Orthogonal
|
$R in RR^(n times n)$ Orthogonal
|
||||||
|
|
||||||
|
|
||||||
1. $A^T A$ berechnen $A^T A in RR^(k times k), k = min(n, m)$
|
1. $A A^T$ berechnen $A A^T in RR^(m times m)$
|
||||||
|
|
||||||
2. Eigenwerte bestimmen $det(A^T A - E lambda) = 0$ \
|
2. $A A^T$ diagonalisieren in $R$, $D$
|
||||||
$lambda_0, lambda_1 ... lambda_k$ nach Größe sortieren \
|
|
||||||
Singulärewerte: $sigma_i = sqrt(lambda_i)$
|
|
||||||
|
|
||||||
3. Eigenvekoren von $A^T A$ bestimmen und *Normalisieren*
|
3. Singulärwere berechen: $sigma_i = sqrt(lambda_i) $
|
||||||
$v_(lambda 0), v_(lambda 1), ... v_(lambda k)$
|
|
||||||
|
|
||||||
4. $V = mat( |, |, ..., |; v_0, v_1, ..., v_n; |, |, ..., |) --> V^T$ \
|
4. $l_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; l_0, l_1, ..., l_m; |, |, ..., |)$ \
|
||||||
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
|
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
|
||||||
|
|
||||||
5. $u_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; u_0, u_1, ..., u_m; |, |, ..., |)$ \
|
5. $S in RR^(n times m)$ (wie $A$): \
|
||||||
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
|
|
||||||
|
|
||||||
6. $S in RR^(n times m)$ (wie $A$):
|
|
||||||
|
|
||||||
$S = mat(sigma_0, 0; 0, sigma_1; dots.v, dots.v; 0, 0) quad quad quad S = mat(sigma_0, 0, dots, 0; 0, sigma_1, ..., 0)$
|
$S = mat(sigma_0, 0; 0, sigma_1; dots.v, dots.v; 0, 0) quad quad quad S = mat(sigma_0, 0, dots, 0; 0, sigma_1, ..., 0)$
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user