Added CT good to know sheet
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Has been cancelled

This commit is contained in:
alexander
2026-02-03 19:24:07 +01:00
parent 83aa6764fe
commit 7e30cfee79
3 changed files with 87 additions and 41 deletions

View File

@@ -332,32 +332,33 @@
#subHeading(fill: colorMatrixVerfahren)[Diagonalisierung]
$A = R D R^(-1)$
#grid(
columns: (1fr, 1fr),
$D = mat(
lambda_1, 0, 0,...;
0, lambda_1, 0, ...;
0, 0, lambda_2, ...;
dots.v, dots.v, dots.v, dots.down
)$,
$D^n = mat(
lambda_1^n, 0, 0,...;
0, lambda_1^n, 0, ...;
0, 0, lambda_2^n, ...;
dots.v, dots.v, dots.v, dots.down
)$
) \
*Rezept Diagonalisierung*
1. *EW* bestimmen
2. $chi_A$ bestimmen und in $(lambda_0 - lambda)^(n_0) dot (lambda_1 - lambda)^(n_1) ...$ Form bringen \
$chi_A$ nicht vollstandig zerfällt (in $RR$), $=>$ NICHT diagonalisierbar
3. *EV* bestimmen
4. $R = mat( bar, bar, ..; v_(lambda 0), v_(lambda 1), ...; bar, bar, ...)$
5. $R^(-1)$ bestimmen
]
1. EW bestimmen: $det(A - lambda I) = 0$ \
$=> chi_A = (lambda_1 - lambda)^(m 1) (lambda_2 - lambda)^(m 2) ...$
2. EV bestimmen: $spann(kern(A - lambda_i I))$: $r_0, r_1, ...$
3. \
#grid(columns: (1fr, 1fr),
[
Diagnoalmatrix: $D$
$mat(
lambda_1, 0, 0,...;
0, lambda_1, 0, ...;
0, 0, lambda_2, ...;
dots.v, dots.v, dots.v, dots.down
)
$
],
[
Basiswechselmatrix: $R$
$mat(
|, | , ..., |;
r_0, r_1, ..., r_n;
|, |, ..., |
)$
]
)
]
#bgBlock(fill: colorMatrixVerfahren)[
@@ -368,31 +369,24 @@
#bgBlock(fill: colorMatrixVerfahren)[
#subHeading(fill: colorMatrixVerfahren)[SVD]
$A in RR^(m times n)$ zerlegbar in $A = U Sigma V^T$ \
$A in RR^(m times n)$ zerlegbar in $A = L S R^T$ \
$U in RR^(m times m)$ Orthogonal \
$Sigma in RR^(m times n)$ Diagonal \
$V in RR^(n times n)$ Orthogonal
$L in RR^(m times m)$ Orthogonal \
$S in RR^(m times n)$ Diagonal \
$R in RR^(n times n)$ Orthogonal
1. $A^T A$ berechnen $A^T A in RR^(k times k), k = min(n, m)$
1. $A A^T$ berechnen $A A^T in RR^(m times m)$
2. Eigenwerte bestimmen $det(A^T A - E lambda) = 0$ \
$lambda_0, lambda_1 ... lambda_k$ nach Größe sortieren \
Singulärewerte: $sigma_i = sqrt(lambda_i)$
2. $A A^T$ diagonalisieren in $R$, $D$
3. Eigenvekoren von $A^T A$ bestimmen und *Normalisieren*
$v_(lambda 0), v_(lambda 1), ... v_(lambda k)$
4. $V = mat( |, |, ..., |; v_0, v_1, ..., v_n; |, |, ..., |) --> V^T$ \
3. Singulärwere berechen: $sigma_i = sqrt(lambda_i) $
4. $l_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; l_0, l_1, ..., l_m; |, |, ..., |)$ \
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
5. $u_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; u_0, u_1, ..., u_m; |, |, ..., |)$ \
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
6. $S in RR^(n times m)$ (wie $A$):
5. $S in RR^(n times m)$ (wie $A$): \
$S = mat(sigma_0, 0; 0, sigma_1; dots.v, dots.v; 0, 0) quad quad quad S = mat(sigma_0, 0, dots, 0; 0, sigma_1, ..., 0)$
]