Merge branch 'main' of gitea.mintcalc.com:alexander/TUM-Formelsammlungen
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 13s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 13s
This commit is contained in:
@@ -4,6 +4,8 @@
|
|||||||
#show math.integral: it => math.limits(math.integral)
|
#show math.integral: it => math.limits(math.integral)
|
||||||
#show math.sum: it => math.limits(math.sum)
|
#show math.sum: it => math.limits(math.sum)
|
||||||
|
|
||||||
|
#set text(7pt)
|
||||||
|
|
||||||
#set page(
|
#set page(
|
||||||
paper: "a4",
|
paper: "a4",
|
||||||
margin: (
|
margin: (
|
||||||
|
|||||||
206
src/cheatsheets/Digitaltechnik.typ
Normal file
206
src/cheatsheets/Digitaltechnik.typ
Normal file
@@ -0,0 +1,206 @@
|
|||||||
|
#import "../lib/common_rewrite.typ" : *
|
||||||
|
#import "@preview/mannot:0.3.1"
|
||||||
|
|
||||||
|
#show math.integral: it => math.limits(math.integral)
|
||||||
|
#show math.sum: it => math.limits(math.sum)
|
||||||
|
|
||||||
|
#set page(
|
||||||
|
paper: "a4",
|
||||||
|
margin: (
|
||||||
|
bottom: 10mm,
|
||||||
|
top: 5mm,
|
||||||
|
left: 5mm,
|
||||||
|
right: 5mm
|
||||||
|
),
|
||||||
|
flipped:true,
|
||||||
|
footer: context [
|
||||||
|
#grid(
|
||||||
|
align: center,
|
||||||
|
columns: (1fr, 1fr, 1fr),
|
||||||
|
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||||
|
[#align(center, counter(page).display("- 1 -"))],
|
||||||
|
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||||
|
)
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
#place(top+center, scope: "parent", float: true, heading(
|
||||||
|
[Digitaltechnik]
|
||||||
|
))
|
||||||
|
|
||||||
|
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||||
|
#let MathAlignLeft(e) = {
|
||||||
|
align(left, block(e))
|
||||||
|
}
|
||||||
|
|
||||||
|
#let colorBoolscheLogic = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||||
|
#let colorOptimierung = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||||
|
#let colorRealsierung = color.hsl(280deg, 92.13%, 75.1%)
|
||||||
|
#let colorState = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||||
|
//#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||||
|
|
||||||
|
#let LNot(x) = math.op($overline(#x)$)
|
||||||
|
|
||||||
|
#columns(4, gutter: 2mm)[
|
||||||
|
#bgBlock(fill: colorBoolscheLogic)[
|
||||||
|
#subHeading(fill: colorBoolscheLogic)[Allgemein]
|
||||||
|
*Moorsches Gesetz:* 2x der Anzahl der Transistoren pro Fläche (in 2 Jahren)
|
||||||
|
|
||||||
|
Flächenskalierung eines Transistors: $1/sqrt(2)$
|
||||||
|
|
||||||
|
*Kombinatorisch:* Kein Gedächtnis
|
||||||
|
|
||||||
|
*(Synchrone) sequenentielle:* Mit Gedächtnis
|
||||||
|
|
||||||
|
*Fan-In:* Anzahl der Inputs eines Gatters
|
||||||
|
|
||||||
|
*Fan-Out:* Anzahl der Output Verbindungen eines Gatters
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorBoolscheLogic)[
|
||||||
|
#subHeading(fill: colorBoolscheLogic)[Boolsche Algebra]
|
||||||
|
|
||||||
|
*Dualität*
|
||||||
|
$LNot(0) = 1$, $LNot(1) = 0$
|
||||||
|
|
||||||
|
*Äquivalenz* $LNot((LNot(A)))=A$\
|
||||||
|
$A dot A = A$, $A + 0 = A$ \
|
||||||
|
|
||||||
|
*Konstanz*
|
||||||
|
$A dot 1 = A$ $A + 1 = 1$
|
||||||
|
|
||||||
|
*Komplementärgesetz* \
|
||||||
|
$A dot LNot(A) = 0$, $A + LNot(A) = 1$
|
||||||
|
|
||||||
|
*Kommutativgesetz* \
|
||||||
|
$A dot B = B dot A$, $A + B = B + A$
|
||||||
|
|
||||||
|
*Assoziativgesetz*\
|
||||||
|
$A dot (B dot C) = (A dot B) dot C$\
|
||||||
|
$A + (B + C) = (A + B) + C$
|
||||||
|
|
||||||
|
*Distributivgesetz*\
|
||||||
|
$A dot (B + C) = A dot B + A dot C$ \
|
||||||
|
$A + (B dot C) = (A + B) dot (A + C)$
|
||||||
|
|
||||||
|
*De Morgan*\
|
||||||
|
$LNot((A + B)) = LNot(A) dot LNot(B)$\
|
||||||
|
$LNot((A dot B)) = LNot(A) + LNot(B)$
|
||||||
|
|
||||||
|
*Absorptionsgesetz*\
|
||||||
|
$A + (A dot B) = A$\
|
||||||
|
$A dot (A + B) = A$
|
||||||
|
|
||||||
|
*Resolutionsgesetz (allgemein)*\
|
||||||
|
$X dot A + LNot(X) + B = X dot A + LNot(X) dot B + bold(A dot B)$
|
||||||
|
|
||||||
|
*Resolutionsgesetz (speziell)*\
|
||||||
|
$X dot A + LNot(X) dot A = A$\
|
||||||
|
$(X + A) dot (LNot(X) + A) = A$
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorBoolscheLogic)[
|
||||||
|
#subHeading(fill: colorBoolscheLogic)[Boolsche Funktionen]
|
||||||
|
|
||||||
|
$f: {0,1}^n -> {0,1}$
|
||||||
|
|
||||||
|
Variablenmenge: ${x_0, x_1, ..., x_n}$\
|
||||||
|
Literalmenge: ${x_0, ..., x_n, LNot(x_0), ... LNot(x_n)}$ \
|
||||||
|
Einsmenge: $F = {underline(v) in {0,1}^n | f(underline(v)) = 1}$
|
||||||
|
Nullmenge: $overline(F) = {underline(v) in {0,1}^n | f(underline(v)) = 0}$
|
||||||
|
Don't-Care-Set: ${underline(v) in {0,1}^n | f(underline(v)) = *}$
|
||||||
|
|
||||||
|
Funktionsbündel: $underline(y) = underline(f)(underline(x))$ \
|
||||||
|
$underline(f): {0,1}^n -> {0,1}^m$
|
||||||
|
|
||||||
|
*Kofaktoren* aka Bit $n$ fixen\
|
||||||
|
$x_i : f_x_i = f(x_1, ..., 1, ..., x_n)$\
|
||||||
|
$overline(x)_i : f_overline(x)_i = f(x_1, ..., 0, ..., x_n)$
|
||||||
|
|
||||||
|
*Substitutionsregel*
|
||||||
|
|
||||||
|
$x_i dot f = x_i dot f_x_i$
|
||||||
|
|
||||||
|
$overline(x)_i dot f = overline(x)_i dot f_overline(x)_i$
|
||||||
|
|
||||||
|
$x_i + f = x_i + f_overline(x)_i$
|
||||||
|
|
||||||
|
$overline(x)_i + f = overline(x)_i + f_x_i$
|
||||||
|
|
||||||
|
*Boolsche Expansion*\
|
||||||
|
$f(underline(x)) = x_i dot f_x_i + overline(x)_i dot f_overline(x)_i$
|
||||||
|
|
||||||
|
$f(underline(x)) = (x_i + f_overline(x)_i) dot (overline(x)_i + f_x_i)$
|
||||||
|
|
||||||
|
$overline(f(underline(x))) = overline(x)_i dot overline(f_overline(x)_i) + x_i dot overline(f_x_i)$
|
||||||
|
|
||||||
|
$overline(f(underline(x))) = (overline(x)_i + overline(f_x_i)) dot (x_i + overline(f_overline(x)_i)) $
|
||||||
|
|
||||||
|
*Eigentschaften:*
|
||||||
|
|
||||||
|
tautologisch: $f(underline(x)) = 1, forall underline(x) in {0,1}^n$\
|
||||||
|
kontradiktorisch: $f(underline(x)) = 0, forall underline(x) in {0,1}^n$\
|
||||||
|
unabhängig von $x_i <=> f_x_i = f_overline(x)_i$\
|
||||||
|
abhängig von $x_i <=> f_x_i != f_overline(x)_i$\
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorOptimierung)[
|
||||||
|
#subHeading(fill: colorOptimierung)[Hauptsatz der Schaltalgebra]
|
||||||
|
Jede $f(x_0, ...,x_n)$ kann als...
|
||||||
|
- *Minterme $m$:* $ = LNot(x)_0 dot x_1 dot ...$\
|
||||||
|
VerODERungen von VerUNDungen\
|
||||||
|
$f(underline(x)) = m_0 + m_1 + ... + m_n$
|
||||||
|
|
||||||
|
- *Maxterme $M$:* $ = LNot(x)_0 + x_1 ü ...$\
|
||||||
|
VerUNDungen von VerODERungen\
|
||||||
|
$f(underline(x)) = m_0 dot m_1 dot ... dot m_n$
|
||||||
|
|
||||||
|
... dargestellt werden
|
||||||
|
|
||||||
|
*DNF:* Disjunktive Normalform, *Minterme*
|
||||||
|
- Term $tilde.equiv$ $1$-Zeile
|
||||||
|
- $LNot(x)_0 dot x_1 + x_0 dot x_1 +...$\
|
||||||
|
- $1 tilde.equiv x_0$, $0 tilde.equiv overline(x_0)$
|
||||||
|
|
||||||
|
*KNF:* Konjunktive Normalform, *Maxterme*
|
||||||
|
- Term $tilde.equiv$ $0$-Zeile
|
||||||
|
- $(LNot(x)_0 + LNot(x)_1) dot (x_0 + x_1) dot...$\
|
||||||
|
- $1 tilde.equiv overline(x_0)$, $0 tilde.equiv x_0$
|
||||||
|
|
||||||
|
Kanonische: In jedem Term müssen alle enthalten sein.
|
||||||
|
|
||||||
|
*KDNF:* Kanonische DNF\
|
||||||
|
*KKNF:* Kanonische KNF
|
||||||
|
|
||||||
|
$f(underline(x)) -->$ *KKNF* / *KDNF* mit Boolsche Expansion
|
||||||
|
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorOptimierung)[
|
||||||
|
#subHeading(fill: colorOptimierung)[Quine McCluskey]
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorRealsierung)[
|
||||||
|
#subHeading(fill: colorRealsierung)[NMOS/PMOS]
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorRealsierung)[
|
||||||
|
#subHeading(fill: colorRealsierung)[CMOS]
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorState)[
|
||||||
|
#subHeading(fill: colorState)[Timing]
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorState)[
|
||||||
|
#subHeading(fill: colorState)[Latches und Register]
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorState)[
|
||||||
|
#subHeading(fill: colorState)[Pipeline/Parallele Verarbeitungseinheiten]
|
||||||
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorState)[
|
||||||
|
#subHeading(fill: colorState)[Zustandsautomaten]
|
||||||
|
]
|
||||||
|
]
|
||||||
@@ -4,6 +4,7 @@
|
|||||||
|
|
||||||
#set math.mat(delim: "[")
|
#set math.mat(delim: "[")
|
||||||
#show math.equation.where(block: true): it => math.inline(it)
|
#show math.equation.where(block: true): it => math.inline(it)
|
||||||
|
#set math.mat(delim: "[")
|
||||||
|
|
||||||
#set page(
|
#set page(
|
||||||
paper: "a4",
|
paper: "a4",
|
||||||
@@ -66,7 +67,7 @@
|
|||||||
|
|
||||||
Knotenzidenzmatrix $bold(A)$
|
Knotenzidenzmatrix $bold(A)$
|
||||||
|
|
||||||
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
|
$bold(A) : bold(i_k) -> text("Knotenstrombilanz") = 0$ \
|
||||||
$bold(A^T) : bold(u_b)-> bold(u_k)$
|
$bold(A^T) : bold(u_b)-> bold(u_k)$
|
||||||
$
|
$
|
||||||
bold(A) = quad mannot.mark(mat(
|
bold(A) = quad mannot.mark(mat(
|
||||||
@@ -81,6 +82,9 @@
|
|||||||
|
|
||||||
a in {-1, 0, 1}
|
a in {-1, 0, 1}
|
||||||
$
|
$
|
||||||
|
|
||||||
|
$-1$: In Knoten rein \
|
||||||
|
$1$: Aus Knoten raus \
|
||||||
|
|
||||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||||
|
|
||||||
@@ -104,6 +108,9 @@
|
|||||||
b in {-1, 0, 1}
|
b in {-1, 0, 1}
|
||||||
$
|
$
|
||||||
|
|
||||||
|
$-1$: Gegen Maschenrichtung
|
||||||
|
$1$: In Maschenrichtung
|
||||||
|
|
||||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||||
|
|
||||||
*KCL und KVL* \
|
*KCL und KVL* \
|
||||||
@@ -121,6 +128,10 @@
|
|||||||
|
|
||||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||||
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
|
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
|
||||||
|
KCLs: $n-1$\
|
||||||
|
KVLs: $b-(n-1)$
|
||||||
|
|
||||||
|
Baum einzeichnen (Keine Schleifen!)
|
||||||
]
|
]
|
||||||
|
|
||||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||||
@@ -130,8 +141,6 @@
|
|||||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||||
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
|
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
]
|
]
|
||||||
|
|
||||||
#pagebreak()
|
#pagebreak()
|
||||||
|
|||||||
Reference in New Issue
Block a user