Erweiterung Analysis
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 15s
This commit is contained in:
@@ -200,25 +200,24 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
- Zwerlegen in Konvergente Teil folgen \
|
||||
(Vorallem bei $(-1)^n dot a_n$)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[L'Hospital]
|
||||
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
|
||||
|
||||
*L'Hospital*
|
||||
|
||||
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
|
||||
(Konvergenz gegen $b$, beliebiges $a$)
|
||||
|
||||
(Konvergenz gegen $b$, beliebiges $a$)
|
||||
Bendingungen:
|
||||
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
|
||||
2. $g'(x) != 0, x in (a,b)$
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert
|
||||
|
||||
Bendingungen:
|
||||
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
|
||||
2. $g'(x) != 0, x in (a,b)$
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert
|
||||
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
|
||||
|
||||
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
|
||||
|
||||
Kann auch Reksuive angewendet werden!
|
||||
|
||||
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||
Kann auch Reksuive angewendet werden!
|
||||
|
||||
Bei "$infinity dot 0$" mit $f(x)g(x) = f(x)/(1/g(x))$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
@@ -331,28 +330,52 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
)
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Funktionen]
|
||||
Sei $f : [a,b] -> RR$, stetig auf $x in [a,b]$
|
||||
- *Zwischenwertsatz* \
|
||||
$=> forall y in [f(a), f(b)] exists text("min. ein") x in [a,b] : f(x) = y$ \
|
||||
_Beweiß für mindest. n Nst_
|
||||
- *Satze von Rolle* \
|
||||
diffbar $x in (a,b)$\
|
||||
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$
|
||||
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||
|
||||
- *Mittelwertsatz*
|
||||
diffbar $x in (a,b)$ \
|
||||
$f(x) = y, f : A -> B$
|
||||
|
||||
*Injectiv (Monomorphismus):* one to one\
|
||||
$f(x) = f(y) <=> x = y quad$
|
||||
|
||||
*Surjectiv (Epimorhismis):* Output space coverered \
|
||||
- $forall x in B : exists x in A : f(x) = y$
|
||||
|
||||
*Bijektiv*
|
||||
|
||||
injektiv UND Surjectiv $<=>$ Umkehrbar
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Funktionen Sätze]
|
||||
$f(x)$ diff'bar $=> f(x)$ stetig
|
||||
|
||||
$f(x)$ stetig diff'bar $=> f(x)$ diff'bar, stetig UND $f'(x)$ stetig
|
||||
|
||||
#line(length: 100%, stroke: 0.3mm)
|
||||
|
||||
Sei $f : I =[a,b] -> RR$, stetig auf $x in I$
|
||||
|
||||
|
||||
- *Zwischenwertsatz* \
|
||||
$=> forall y in ["min", "max"] space exists text("min. ein") x in [a,b] : f(x) = y$ \
|
||||
_Beweiß für mindest. n Nst_
|
||||
|
||||
- *Mittelwertsatz der Diff'rechnung* \
|
||||
diff'bar $x in (a,b)$ \
|
||||
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
|
||||
|
||||
- *Monotonie* \
|
||||
$x in I : f'(x) < 0$: Streng monoton steigended \
|
||||
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
||||
(Analog bei (streng ) steigned/fallended) \
|
||||
Konstante Funktion bei $f'(x) = 0$
|
||||
- *Mittelwertsatz der Integralrechnung*\
|
||||
|
||||
|
||||
- *Satze von Rolle* \
|
||||
diffbar $x in (a,b)$\
|
||||
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
|
||||
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||
|
||||
- *Hauptsatz der Integral und Diff'rechnung*
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
@@ -401,7 +424,6 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Differenzierbarkeit*
|
||||
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
|
||||
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
|
||||
- $f(x)$ diffbar $=>$ $f(x)$ stetig
|
||||
- Tangente an $x_0$: $f(x_0) + f'(x_0)(x - x_0)$
|
||||
- Beste #underline([linear]) Annäherung
|
||||
- Tangente $t(x)$ von $f(x)$ an der Stelle $x_0$: $ lim_(x->0) (f(x) - f(x_0))/(x-x_0) -f'(x_0) =0 $
|
||||
@@ -470,6 +492,73 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
[$op("artanH")(x)$], [$1/(1 - x^2)$],
|
||||
)
|
||||
])
|
||||
#colbreak()
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
|
||||
|
||||
*Monotonie* $forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) <= f(x_1)$
|
||||
|
||||
Hinreichende: $f'(x) >= 0$ \
|
||||
Konstante Funktion bei $f'(x) = 0$
|
||||
|
||||
*Streng Monoton*
|
||||
$forall x_0,x_1 in I, x_0 < x_1 <=> f(x_0) < f(x_1)$ \
|
||||
|
||||
Notwendig: $f'(x) >= 0$ (Aber nicht hinreichend)
|
||||
|
||||
*Extremstellen Kandiaten*
|
||||
1. $f'(x) = 0$
|
||||
2. Definitionslücken
|
||||
3. Randstellen von $DD$
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
[
|
||||
*Minima*\
|
||||
$x_0,x in I : f(x_0) < f(x)$ \
|
||||
$f''(x) > 0 $ \
|
||||
$f'(x) : - space 0 space +$
|
||||
],
|
||||
[
|
||||
*Maxima*\
|
||||
$x_0,x in I : f(x_0) > f(x)$ \
|
||||
$f''(x) < 0$ \
|
||||
$f'(x) : + space 0 space -$
|
||||
],
|
||||
[
|
||||
*Wendepunkt*\
|
||||
$f''(x) = 0$ \
|
||||
$f'(x) : plus.minus space ? space plus.minus$
|
||||
],
|
||||
[
|
||||
*Stattelpunkt/Terrasenpunkt* \
|
||||
$f'''(x) != 0$
|
||||
$f''(x) = 0$ UND $f'(x) = 0$ \
|
||||
$f'(x) : plus.minus space 0 space plus.minus$ \
|
||||
],
|
||||
[
|
||||
*Extremstelle* \
|
||||
$f'(x) = 0$
|
||||
]
|
||||
)
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
[
|
||||
*konkav* $f''(x) <= 0$ \ rechtsgekrümmt \
|
||||
Sekante liegt unter $f(x)$ \
|
||||
(eingebäult, von $y= -infinity$ aus)
|
||||
],
|
||||
[
|
||||
*konvex* $f''(x) >= 0$ \ linksgekrümmt \
|
||||
Sekante liegt über $f(x)$ \
|
||||
(ausgebaucht, von $y= -infinity$ aus)
|
||||
]
|
||||
)
|
||||
|
||||
*Strange Konkav/Konvex* \
|
||||
Notwendig $f''(x) lt.gt 0$
|
||||
]
|
||||
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
@@ -552,12 +641,28 @@ $(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein)[Bedingungen]
|
||||
|
||||
#grid(columns: (1fr, 1fr),
|
||||
gutter: 2mm,
|
||||
inset: (left: 2mm, right: 2mm),
|
||||
$not "notwending" => not "Satz"$,
|
||||
$"hinreichend" => "Satz"$,
|
||||
$"Satz" => forall "notwending" $,
|
||||
$not "Satz" => forall not "hinreichend" $,
|
||||
|
||||
$"notwending" arrow.r.double.not "Satz"$,
|
||||
$not "hinreichend" arrow.r.double.not "Satz"$,
|
||||
)
|
||||
])
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#pagebreak()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user