Added comments
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
This commit is contained in:
2
.gitignore
vendored
2
.gitignore
vendored
@@ -5,3 +5,5 @@ __pycache__/
|
|||||||
|
|
||||||
package-lock.json
|
package-lock.json
|
||||||
package.json
|
package.json
|
||||||
|
|
||||||
|
*.pdf
|
||||||
@@ -44,6 +44,8 @@
|
|||||||
|
|
||||||
|
|
||||||
#columns(4, gutter: 2mm)[
|
#columns(4, gutter: 2mm)[
|
||||||
|
|
||||||
|
// Allgemeiner Shit
|
||||||
#bgBlock(fill: colorAllgemein)[
|
#bgBlock(fill: colorAllgemein)[
|
||||||
#subHeading(fill: colorAllgemein)[Allgemeins]
|
#subHeading(fill: colorAllgemein)[Allgemeins]
|
||||||
|
|
||||||
@@ -91,6 +93,7 @@
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
// Complex Zahlen
|
||||||
#bgBlock(fill: colorAllgemein)[
|
#bgBlock(fill: colorAllgemein)[
|
||||||
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
||||||
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
||||||
@@ -330,6 +333,7 @@
|
|||||||
- Alles
|
- Alles
|
||||||
]
|
]
|
||||||
|
|
||||||
|
// Potenzreihen
|
||||||
#bgBlock(fill: colorReihen)[
|
#bgBlock(fill: colorReihen)[
|
||||||
#subHeading(fill: colorReihen)[Potenzreihen]
|
#subHeading(fill: colorReihen)[Potenzreihen]
|
||||||
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
|
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
|
||||||
@@ -421,8 +425,11 @@
|
|||||||
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
|
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
|
||||||
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||||
|
|
||||||
- *Hauptsatz der Integral und Diff'rechnung*
|
- *Hauptsatz der Integralrechung*
|
||||||
|
Sei $f: [a,b] -> RR$ stetig
|
||||||
|
|
||||||
|
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||||
|
$=> F'(x) = f(x) forall x in [a,b]$
|
||||||
]
|
]
|
||||||
|
|
||||||
// Stetigkeit
|
// Stetigkeit
|
||||||
@@ -543,6 +550,7 @@
|
|||||||
)
|
)
|
||||||
])
|
])
|
||||||
|
|
||||||
|
// Extremstellen, Krümmung, Monotonie
|
||||||
#bgBlock(fill: colorAbleitung)[
|
#bgBlock(fill: colorAbleitung)[
|
||||||
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
|
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
|
||||||
|
|
||||||
@@ -610,10 +618,11 @@
|
|||||||
Notwendig $f''(x) lt.gt 0$
|
Notwendig $f''(x) lt.gt 0$
|
||||||
]
|
]
|
||||||
|
|
||||||
|
// Integral
|
||||||
#bgBlock(fill: colorIntegral, [
|
#bgBlock(fill: colorIntegral, [
|
||||||
#subHeading(fill: colorIntegral, [Integral])
|
#subHeading(fill: colorIntegral, [Integral])
|
||||||
|
|
||||||
Wenn $f(x)$ stetig und monoton $=>$ intbar
|
Wenn $f(x)$ stetig und monoton $=>$ integrierbar
|
||||||
|
|
||||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||||
|
|
||||||
@@ -623,13 +632,6 @@
|
|||||||
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
||||||
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
||||||
|
|
||||||
*Hauptsatz der Integralrechung*
|
|
||||||
|
|
||||||
Sei $f: [a,b] -> RR$ stetig
|
|
||||||
|
|
||||||
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
|
||||||
$=> F'(x) = f(x) forall x in [a,b]$
|
|
||||||
|
|
||||||
*Partial Integration*
|
*Partial Integration*
|
||||||
|
|
||||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||||
|
|||||||
Reference in New Issue
Block a user