Added comments
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
This commit is contained in:
@@ -44,6 +44,8 @@
|
||||
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
|
||||
// Allgemeiner Shit
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Allgemeins]
|
||||
|
||||
@@ -91,6 +93,7 @@
|
||||
)
|
||||
]
|
||||
|
||||
// Complex Zahlen
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
||||
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
||||
@@ -330,6 +333,7 @@
|
||||
- Alles
|
||||
]
|
||||
|
||||
// Potenzreihen
|
||||
#bgBlock(fill: colorReihen)[
|
||||
#subHeading(fill: colorReihen)[Potenzreihen]
|
||||
$P(z) = sum_(n=0)^infinity a_n dot (z- z_0)^n quad z,z_0 in CC$
|
||||
@@ -421,8 +425,11 @@
|
||||
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$\
|
||||
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||
|
||||
- *Hauptsatz der Integral und Diff'rechnung*
|
||||
- *Hauptsatz der Integralrechung*
|
||||
Sei $f: [a,b] -> RR$ stetig
|
||||
|
||||
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||
$=> F'(x) = f(x) forall x in [a,b]$
|
||||
]
|
||||
|
||||
// Stetigkeit
|
||||
@@ -543,6 +550,7 @@
|
||||
)
|
||||
])
|
||||
|
||||
// Extremstellen, Krümmung, Monotonie
|
||||
#bgBlock(fill: colorAbleitung)[
|
||||
#subHeading(fill: colorAbleitung)[Extremstellen, Krümmung, Monotonie]
|
||||
|
||||
@@ -610,10 +618,11 @@
|
||||
Notwendig $f''(x) lt.gt 0$
|
||||
]
|
||||
|
||||
// Integral
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Wenn $f(x)$ stetig und monoton $=>$ intbar
|
||||
Wenn $f(x)$ stetig und monoton $=>$ integrierbar
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
@@ -623,13 +632,6 @@
|
||||
$f(x) <= q(x) forall x in [a,b] => integral_a^b f(x) d x <= integral_a^b g(x) d x$ \
|
||||
$abs(integral_a^b f(x) d x) <= integral_a^b abs(f(x)) d x$
|
||||
|
||||
*Hauptsatz der Integralrechung*
|
||||
|
||||
Sei $f: [a,b] -> RR$ stetig
|
||||
|
||||
$F(x) = integral_a^x f(t) d t, x in [a,b]$\
|
||||
$=> F'(x) = f(x) forall x in [a,b]$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
Reference in New Issue
Block a user