73 lines
1.9 KiB
Typst
73 lines
1.9 KiB
Typst
#let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm, left: 2mm, right: 2mm,))
|
|
|
|
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
|
#let MathAlignLeft(e) = {
|
|
align(left, block(e))
|
|
}
|
|
|
|
#let subHeading(body, fill: color) = {
|
|
move(dx: -2mm, dy: 0mm, box(
|
|
align(
|
|
top+center,
|
|
text(
|
|
body,
|
|
size: 8pt,
|
|
weight: "bold",
|
|
style: "italic",
|
|
)
|
|
),
|
|
fill: fill,
|
|
width: 100% + 4mm,
|
|
inset: 1mm,
|
|
height: auto
|
|
))
|
|
}
|
|
|
|
#let MathAlignLeft(e) = {
|
|
align(left, block(e))
|
|
}
|
|
|
|
#let tableFillHigh = white
|
|
#let tableFillLow = color.lighten(gray, 50%)
|
|
|
|
#let sinTable = [
|
|
#let data = json("../sintable.json")
|
|
#table(
|
|
columns: data.len(),
|
|
rows: data.keys().len(),
|
|
stroke: none,
|
|
table.hline(stroke: (thickness: 0.3mm)),
|
|
fill: (x, y) => if (calc.rem(y, 2) == 0) { tableFillLow } else { tableFillHigh },
|
|
|
|
table.vline(),
|
|
..for (i, label) in data.keys().enumerate() {
|
|
([*#eval(label, mode: "math")*], if i > 0 { table.vline() } else { table.vline(stroke: none) })
|
|
},
|
|
|
|
table.hline(stroke: (thickness: 0.3mm)),
|
|
|
|
..for (i, v) in data.at("x").enumerate() {
|
|
for (col) in data.keys() {
|
|
(eval(data.at(col).at(i), mode: "math"),)
|
|
}
|
|
},
|
|
table.hline(stroke: (thickness: 0.3mm)),
|
|
)
|
|
]
|
|
|
|
#let ComplexNumbersSection(i: $i$) = [
|
|
$1/#i = #i^(-1) = -#i quad quad #i^2=-1 quad quad sqrt(#i) = 1/sqrt(2) + 1/sqrt(2)#i$
|
|
|
|
$z in CC = a + b #i quad quad quad z = r dot e^(#i phi)$ \
|
|
$z_0 + z_1 = (a_0 + a_1) + (b_0 + b_1) #i$\
|
|
$z_0 dot z_1 = (a_1 a_2 - b_1 b_2) + #i (a_1b_2 + a_2 b_1) = r_0 r_1 e^(#i (phi_0 + phi_1))$\
|
|
$z^x = r^x dot e^(phi #i dot x) quad x in RR$ \
|
|
$z_0/z_1 = r_0/r_1 e^(#i (phi_0 - phi_1)) quad quad quad$
|
|
|
|
$z^* = a - #i b = r e^(-#i phi)$
|
|
|
|
$r = abs(z) quad phi = cases(
|
|
+ arccos(a/r) space : space b >= 0,
|
|
- arccos(a/r) space : space b < 0,
|
|
)$
|
|
] |