Files
TUM-Formelsammlungen/src/Schaltungstheorie/Schaltungstheorie.typ
alexander b16009f62a
Some checks failed
Build Typst PDFs (Docker) / build-typst (push) Failing after 15s
asd
2026-01-18 18:11:26 +01:00

209 lines
6.3 KiB
Typst

#import "../lib/common_rewrite.typ" : *
#import "@preview/mannot:0.3.1"
#import "@preview/zap:0.5.0"
#show math.equation.where(block: true): it => math.inline(it)
#set page(
paper: "a4",
margin: (
bottom: 10mm,
top: 5mm,
left: 5mm,
right: 5mm
),
flipped:true,
footer: context [
#grid(
align: center,
columns: (1fr, 1fr, 1fr),
[#align(left, datetime.today().display("[day].[month].[year]"))],
[#align(center, counter(page).display("- 1 -"))],
[#align(right, image("../images/cc0.png", height: 5mm,))]
)
],
)
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorEineTore = color.hsl(202.05deg, 92.13%, 75.1%)
#let colorZweiTore = color.hsl(235.9deg, 92.13%, 75.1%)
#let colorAnalyseVerfahren = color.hsl(280deg, 92.13%, 75.1%)
#let colorComplexAC = color.hsl(356.92deg, 92.13%, 75.1%)
#let colorMathe = color.hsl(34.87deg, 92.13%, 75.1%)
#place(top+center, scope: "parent", float: true, heading(
[Schaltungstheorie]
))
#columns(4, gutter: 2mm)[
#bgBlock(fill: colorEineTore)[
#subHeading(fill: colorEineTore)[Quelle Wandlung]
#zap.circuit({
import zap: *
set-style(scale: (x: 0.75, y:0.75), fill: none)
resistor("R1", (-2, 0), (0, 0))
vsource("V1", (-2, 0), (-2, -2))
wire((-2, -2), (0, -2))
node("n1", (0, 0), label: "1")
node("n2", (0, -2), label: "2")
})
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Graphen und Matrizen]
$bold(i_b)$ (oder $bold(i)$): Zweigstrom-Vektor \
$bold(u_b)$ (oder $bold(u)$): Zweigspannungs-Vektor \
$bold(i_m)$ : Maschenstrom-Vektor \
#text(rgb(20%, 20%, 20%))[(Strom in einer viruellen Masche)] \
$bold(u_k)$ : Kontenspannungs-Vektor \
#text(rgb(20%, 20%, 20%))[(Spannung zwischen Referenzknoten und Knoten k)] \
#line(length: 100%, stroke: (thickness: 0.2mm))
Knotenzidenzmatrix $bold(A)$
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
$bold(A^T) : bold(u_b)-> bold(u_k)$
$
bold(A) = quad mannot.mark(mat(
a_11, a_12, ..., a_(1m);
a_21, a_22, ..., a_(2m);
dots.v, dots.v, dots.down, dots.v;
a_(n 1), a_(n 2), ..., a_(n m)
), tag: #<1>)
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Knoten]], dx: 5mm)
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
a in {-1, 0, 1}
$
#line(length: 100%, stroke: (thickness: 0.2mm))
Mascheninsidenz Matrix $bold(B)$\
$bold(B) : bold(u_b) -> text("Zweigspannungsbilanz") = 0$ \
$bold(B^T) : bold(i_m) -> i_b$
$
bold(B) = quad mannot.mark(mat(
b_11, b_12, ..., b_(1m);
b_21, b_22, ..., b_(2m);
dots.v, dots.v, dots.down, dots.v;
b_(n 1), b_(n 2), ..., b_(n m)
), tag: #<1>)
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Maschen]], dx: 6mm)
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
b in {-1, 0, 1}
$
#line(length: 100%, stroke: (thickness: 0.2mm))
*KCL und KVL* \
KCL in Nullraum: $ bold(A) bold(i_b) = bold(0)$ \
KVL in Bildraum: $ bold(A^T) bold(u_k) = bold(u_b)$
KVL in Nullraum: $bold(B) bold(u_b) = bold(0)$ \
KCL in Bildraum: $bold(B^T) bold(i_m) = bold(i_b)$ \
*Tellegen'sche Satz* \
$bold(A B^T) = bold(B^T A) = 0$ \
$bold(u_b^T i_b) = 0$
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Machenstrom-/Knotenpotenzial-Analyse]
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
]
]
#pagebreak()
#place(bottom+left, scope: "parent", float: true)[
#bgBlock(fill: colorZweiTore)[
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
#show table.cell: it => pad(),
#table(
columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
align: center,
gutter: 0.1mm,
[In $->$], $bold(R)$, $bold(G)$, $bold(H)$, $bold(H')$, $bold(A)$, $bold(A')$,
$bold(R)$,
$mat(r_11, r_12; r_21, r_22)$,
$1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
$bold(G)$,
$1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
$mat(g_11, g_12; g_21, g_22)$,
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
$bold(H)$,
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
$mat(h_11, h_12; h_21, h_22)$,
$1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
$bold(H')$,
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
$1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
$mat(h'_11, h'_12; h'_21, h'_22)$,
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
$bold(A)$,
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
$mat(a_11, a_12; a_21, a_22)$,
$1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
$bold(A')$,
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
$1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
$mat(a'_11, a'_12; a'_21, a'_22)$,
)
]
]
#place(bottom+left, scope: "parent", float: true)[
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable
])
]