
Linear Algebra EI
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Gruppen

Halbgruppe: (𝑀, ∘) : 𝑀 × 𝑀 → 𝑀
• Assoziativgesetz: 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐

Monoid Halbgruppe 𝑀  mit:

• Identitätselment: 𝑒 ∈ 𝑀 : 𝑎𝑒 = 𝑒𝑎 = 𝑎

Kommutativ/abelsch: Halbgruppe/Monoid mit

• Kommutativgesetz; 𝑎 ⋅ 𝑏 = 𝑏 ⋅ 𝑎

Gruppe: Monoid mit

• Inverse: ∀𝑎 ∈ 𝐺 : ∃ 𝑎𝑎−1 = 𝑎−1𝑎 = 𝑒
• Eindeutig Lösung für Gleichungen

Zusatz:

• Inverseregel: (𝑎 ⋅ 𝑏)−1 = 𝑏−1 ⋅ 𝑎−1

Untergruppe:

• Gruppe: (𝐺, ⋅), 𝑈 ⊂ 𝐺
• 𝑎, 𝑏 ∈ 𝑈 ⇔ 𝑎 ⋅ 𝑏 ∈ 𝑈
• 𝑎 ∈ 𝑈 ⇔ 𝑎−1 ∈ 𝑈
• 𝑒 ∈ 𝑈  (Neutrales Element)

Direktes Produkt:

(𝐺1, ⋅1) × (𝐺2, ⋅2) × …
(𝑎1, 𝑏1, …)(𝑎2, 𝑏2, …) = (𝑎1 ⋅1 𝑏1, 𝑎2 ⋅2 𝑏2, …)

Ring: (auch Schiefkörper) Menge 𝑅 mit:

• (𝑅, +) kommutativ Gruppe

• (𝑅, ⋅) Halbgruppe

• (𝑎 + 𝑏) ⋅ 𝑐 = (𝑎 ⋅ 𝑐) + (𝑎 ⋅ 𝑏)  (Distributiv Gesetz)

Körper: Menge 𝐾 mit:

• (𝐾, +), (𝐾 ∖ {0}, ⋅) kommutativ Gruppe

(0 ist Neutrales Element von +)

• (𝑎 + 𝑏) ⋅ 𝑐 = (𝑎 ⋅ 𝑐) + (𝑎 ⋅ 𝑏)  (Distributiv Gesetz)

Beweiß durch Überprüfung der Eigneschaften

Vektorräume (VR)

(𝑉 , ⊕, ⊙) ist ein über Körper 𝐾
• + : 𝑉 × 𝑉 → 𝑉 , (𝑣, 𝑤) → 𝑣 + 𝑤
• ⋅ : 𝐾 × 𝑉 → 𝑉 , (𝜆, 𝑣) → 𝜆𝑣

Es gilt: 𝜆, 𝜇 ∈ 𝐾,  𝑣, 𝑤 ∈ 𝑉
• (𝜆𝜇)𝑣 = 𝜆(𝜇𝑣)
• 𝜆(𝑣 + 𝑤) = 𝜆𝑣 + 𝜆𝑤

(𝜆 + 𝜇)𝑣 = 𝜆𝑣 + 𝜆𝜇
• 1𝑣 = 𝑣, ⃗0 ∈ 𝑉

Bsp: 𝕂𝑛 (ℝ𝑛, ℂ𝑛)

Untervektorraum: 𝑈 ⊂ 𝑉
𝑣, 𝑤 ∈ 𝑈, 𝜆 ∈ 𝐾
⇔ 𝑣 + 𝑤 ∈ 𝑈 , ⃗0 ∈ 𝑈  UND 𝜆𝑣 ∈ 𝑈
• (𝑈 ∩ 𝑊) ⊂ 𝑉

Basis und Dim

Linear Abbildung: Φ : 𝑉 → 𝑉
• Φ(0) = 0
• Φ(𝜆𝑣 + 𝑤) = 𝜆Φ(𝑣) + Φ(𝑤)

• Menge aller linearen Abbildung: 𝐿(𝑉 , 𝑊)

Basis:

linear unabhänige Menge 𝐵 an 𝑣 ∈ 𝑉 , sodass 

spann(𝑣1, …, 𝑣𝑛) = spann(𝑉 )
• 𝐵 ist Erzeugerssystem von 𝑉
• Endliche Erzeugerssystem: |𝐵1| = |𝐵2|…

Linear unabhänige: Linearkombintation in welcher 

𝜆0 = 0, …, 𝜆𝑛 = 0 die EINZIEGE Lösung für 𝜆0𝑣0 +
… + 𝜆1𝑣1 = 0

Basisergänzungssatz:

Sei {𝑣1, …𝑣𝑛} lin. unabhänig und 𝑀  kein Basis. Dann 

∃𝑣𝑛+1 sodass {𝑣1, …𝑣𝑛, 𝑣𝑛+1} lin unabhänig (aber evt. 

eine Basis ist)

Dimension: dim 𝑉 = #Vektoren der Basis

• dim 𝑉 = ∞, wenn 𝑉  nicht endlich erzeugt ist

Abbildungen

𝑓(𝑥) = 𝑦, 𝑓 : 𝐴 → 𝐵

Injectiv (Monomorphismus):

one to one

𝑓(𝑥) = 𝑓(𝑦) ⇔ 𝑥 = 𝑦

Surjectiv (Epimorhismis):

Output space coverered

• Zeigen das 𝑓(𝑓−1(𝑥)) = 𝑥 für 𝑥 ∈ 𝔻
• ∀𝑥 ∈ 𝐵 : ∃𝑥 ∈ 𝐴 : 𝑓(𝑥) = 𝑦

NICHT surjektiv wenn |𝑎| < |𝑏|

Bijektiv (Isomorphismus):

Injectiv und Surjectiv

• In einer Gruppe ist 𝑓(𝑥) = 𝑥𝑐 für 𝑐, 𝑥 ∈ 𝐺 bijektiv

• isomorph: 𝑉 , 𝑊  VRs, 𝑓  bijektiv 𝑓(𝑉 ) = 𝑊 ⇒ 𝑉 ≅ 𝑊

Beweiß durch Wiederspruch

für Gegenbeweiß

Endomorphismus: 𝐴 → 𝐵 mit 𝐴, 𝐵 ⊆ 𝐶

Automorphismus: Endomorphismus und Bijektiv 

(Isomorphismus)

Vektorraum-Homomorphismus: linear Abbildung 

zwischen VR

Spann und Bild

Spann:

• Vektorraum 𝑉 : spann(𝑉 ) = ∩
𝑀⊂𝑉

𝑈
• 𝐵 : spann(𝑈) = {𝜆0𝑣0 + … + 𝜆𝑛𝑣𝑛, 𝜆0, …𝜆𝑛 ∈ 𝐾}
• spann(Φ(𝑀)) = Φ(spann(𝑀))

Urbild: 𝑓−1(𝐼 ⊂ 𝐵) ⊆ 𝐴

Bild: Wertemenge 𝕎
• 𝑓(𝐼 ⊂ 𝐴) = 𝐵 (Oft 𝐼 = 𝐴)

• Basis 𝐵 : spann(𝐵)
• Bild Φ ≔ {Φ ∈ 𝑊 | 𝑣 ∈ 𝑉 }

Nullraum/Kern:

Kern Φ ≔ {𝑣 ∈ 𝑉 | Φ(𝑣) = 0}

Rang Rang 𝑓 ≔ dim Bild 𝑓

Dimensionssatz: Sei 𝐴 lineare Abbildung

dim(𝑉 ) = dim(kern(𝐴)) + dim(Bild(𝐴))
dim(𝑉 ) = dim(kern(𝐴)) + Rang(𝐴)
dim(𝑉 ) = dim(Bild(𝐴)) oder dim(kern(𝐴)) = 0
⇔ 𝐴 bijektiv ⇔ invertierbar

Determinate und Bilinearform

Eukldische Vektorräume

Unitair Vektorräume

Matrix Typen

𝑚 Zeilen 𝑛 Splate
𝐴 ∈ 𝕂𝑚×𝑛

(



𝑎11
𝑎21

⋮
𝑎𝑚1

𝑎12
𝑎22

⋮
𝑎𝑚2

…
…
⋱
…

𝑎1𝑛
𝑎2𝑛

⋮
𝑎𝑚𝑛)




𝒎

𝒏

𝐴

Einheits Matrix

𝐼, 𝐸

Diagonalmatrix

Σ, 𝐷
Nur Einträger auf 

Hauptdiagonalen

det(𝐷) = 𝑑00 ⋅ 𝑑11 ⋅ 𝑑22 ⋅ …

Symetrisch

𝑆
𝑆 = 𝑆𝑇 , 𝑆 ∈ 𝕂𝑛×𝑛

𝐴𝐴𝑇 , 𝐴𝑇 𝐴 ist symetrisch

𝑆 immer diagonaliserbar

EW immer ∈ ℝ, EV 

orthogonal

Invertierbar ∃𝐴−1 : 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐸

Invertierbar wenn:

𝐴 bijektiv, det(𝐴) = 0
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Spalten Vekoren lin. unabhänig
det(𝐴) = 0

Nicht Invertierbar wenn:

∃ EW ≠ 0 ⇒ ¬ invertierbar 
Keine Qudratische Matrix

Orthogonal

𝑂
𝑂𝑇 = 𝑂−1

⟨𝑂𝑣, 𝑂𝑤⟩ = ⟨𝑣, 𝑤⟩

Unitair 𝑉 ∗)

Diagonaliserbar ∃𝐴 = 𝐵𝐷𝐵−1, 𝐷 diagonal,

𝐵: Splaten sind EV von 𝐴

• Selbst-Adujunkte 

diagonalisierbar

• Symetrisch Matrix

• 𝐴 ∈ 𝕂𝑛×𝑛 AND alg(𝜆) =
geo(𝜆)

postiv-semi-definit ∀ EW ≥ 0

Eigenwert und Eigenvektoren

𝐴 ∈ ℂ𝑛×𝑛 : 𝑛 Complexe Eigenwerte

𝐴 ∈ ℝ𝑛×𝑛

1. Eigentwete bestimmen

𝐴𝑣 = 𝜆𝑣 ⇒ det(𝐴 − 𝐸𝜆) = 0

0 = det
(



𝑥11−𝜆1
𝑥21

⋮
𝑥𝑛1

𝑥12
𝑥22−𝜆2

⋮
𝑥𝑛2

…
…
⋱
…

𝑥1𝑛
𝑥2𝑛

⋮
𝑥𝑛𝑛−𝜆𝑛)




⟶ 𝜒𝐴 = (𝜆0 − 𝜆)𝑛0 ⋅ (𝜆1 − 𝜆)𝑛1…

𝜆0, 𝜆1, … = Nst von 𝜒𝐴

2. Eigenvektor bestimmen

Eig(𝜆𝑘) = kern(𝐴 − 𝜆𝑘𝐸)

(



𝑥11−𝜆𝑘
𝑥21

⋮
𝑥𝑛1

𝑥12
𝑥22−𝜆𝑘

⋮
𝑥𝑛2

…
…
⋱
…

𝑥1𝑛
𝑥2𝑛

⋮
𝑥𝑛𝑛−𝜆𝑘)




(



𝑣1
𝑣2
⋮

𝑣𝑛)

 =

(



0
0
⋮
0)



Algebrasche Vielfacheit: alg(𝜆) = 𝑛0 + 𝑛1 + …
Geometrische Vielfacheit: geo(𝜆) = dim(Eig𝐴(𝜆))

1 ≤ geo(𝜆) ≤ alg(𝜆)

Gram-Schmit ONB

Diagonalisierung

𝐴 = 𝑅𝐷𝑅−1

Rezept Diagonalisierung

1. EW bestimmen: det(𝐴 − 𝜆𝐼) = 0
⇒ 𝜒𝐴 = (𝜆1 − 𝜆)𝑚1(𝜆2 − 𝜆)𝑚2…

2. EV bestimmen: spann(kern(𝐴 − 𝜆𝑖𝐼)): 𝑟0, 𝑟1, …
3.

Diagnoalmatrix: 𝐷 

(



𝜆1
0
0
⋮

0
𝜆1
0
⋮

0
0
𝜆2
⋮

…
…
…
⋱)



Basiswechselmatrix: 𝑅 

(
|

𝑟0
|

|
𝑟1
|

…
…
…

|
𝑟𝑛
|
)

Schur-Zerlegung

immer anwendbar;

SVD

𝐴 ∈ ℝ𝑚×𝑛 zerlegbar in 𝐴 = 𝐿𝑆𝑅𝑇

𝐿 ∈ ℝ𝑚×𝑚 Orthogonal

𝑆 ∈ ℝ𝑚×𝑛 Diagonal

𝑅 ∈ ℝ𝑛×𝑛 Orthogonal

1. 𝐴𝐴𝑇  berechnen 𝐴𝐴𝑇 ∈ ℝ𝑚×𝑚

2. 𝐴𝐴𝑇  diagonalisieren in 𝑅, 𝐷

3. Singulärwere berechen: 𝜎𝑖 = √𝜆𝑖

4. 𝑙𝑖 = 1
𝜎𝑖

𝐴𝑣𝜆𝑖 𝐿 = (
|
𝑙0
|

|
𝑙1
|

…
…
…

|
𝑙𝑚
|
)

(Evt. zu ONB ergenze mit Gram-Schmit/

Kreuzprodukt)

5. 𝑆 ∈ ℝ𝑛×𝑚 (wie 𝐴):

𝑆 =
(



𝜎0
0
⋮
0

0
𝜎1
⋮
0 )

 𝑆 = (𝜎0

0
0
𝜎1

…
…

0
0)

Matrix Normen

‖ ⋅ ‖𝑀  Matrix Norm, ‖ ⋅ ‖𝑉  Vektornorm

Generisch Vektor Norm: ‖ 𝑣 ‖𝑝 = 𝑝√∑𝑛
𝑘=1 (𝑥𝑘)𝑝

• submultiplikativ: ‖𝐴𝐵‖M ≤ ‖𝐴‖‖𝐵‖
• verträglich mit einer Vektornorm: ‖𝐴𝑣‖V ≤ ‖𝐴‖M ‖𝑣‖V

Frobenius-Norm ‖𝐴‖M = √∑𝑚
𝑖=1 ∑𝑛

𝑗=1 𝑎2
𝑚𝑛

Induzierte Norm ‖𝐴‖M = sup𝑣∈𝑉 ∖{0}
‖𝐴𝑣‖𝑉
‖𝑣‖𝑉

= sup‖𝑣‖ =1
‖𝐴𝑣‖𝑉
‖𝑣‖𝑉

• submultiplikativ

• verträglich mit einer Vektornorm ‖ ⋅ ‖𝑉

maximale Spaltensumme ‖𝐴‖𝑟 = max1≤𝑖≤𝑛 ∑𝑛
𝑗=1|𝑎𝑗|

Rekursive Folgen

E.g: 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛 = 𝑥𝑛+1

1. Als Matrix Schreiben 𝐹 : (𝑥𝑛−1
𝑥𝑛

) = ( 𝑥𝑛
𝑥𝑛+1

)
𝐹𝑠𝑛−1 = 𝑠𝑛

2. Diagonaliseren: 𝐹 = 𝑅𝐷𝑅−1

3. Wiederholte Anwendung: 𝐹𝑛 = 𝑅𝐷𝑛𝑅−1

Differenzialgleichungen

— 2 —


	Linear Algebra EI

