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Gruppen

Halbgruppe: (M,o) : M x M — M
« Assoziativgesetz:a - (b-c) = (a-b) - ¢

Monoid Halbgruppe M mit:
« Identititselment: e € M : ae = ea = a

Kommutativ/abelsch: Halbgruppe/Monoid mit
» Kommutativgesetz; a-b=0b-a

Linear Algebra EI

Gruppe: Monoid mit

« Inverse: Va € G:Jaa ' =ala=e

« Eindeutig Losung fiir Gleichungen

Zusatz:
« Inverseregel: (a-b) "1 =b"1.a7!

Untergruppe:

« Gruppe: (G,-),U C G
ca,beUsa-belU
cacUsalelU

» e € U (Neutrales Element)

Direktes Produkt:
(Glr'l) X (G27'2) X oo
(aq,b15-)(ag, by, ...) = (ag -1 by, a9 9 by, ..

Ring: (auch Schiefkérper) Menge R mit:

+ (R, +) kommutativ Gruppe

+ (R, -) Halbgruppe

+ (a+b)-c=(a-c)+ (a-b) (Distributiv Gesetz)

Korper: Menge K mit:
+ (K,+), (K \ {0}, ) kommutativ Gruppe
(0 ist Neutrales Element von +)
+ (a+b)-c=(a-c)+ (a-b) (Distributiv Gesetz)

Beweif§ durch Uberpriifung der Eigneschaften

Vektorraume (VR)

(V,®,®) ist ein tiber Kérper K
s+ VXV oV, (v,w) > v+w
¢« KXV oV, (\v) =

Esgil: \,p e K, v,weV

« (Ap)v = A(pv)

e AMv+w) = v+ Iw
A+ pv=X v+

. 111:11,66‘/

Bsp: K™ (R™,C™)
Untervektorraum: U C V'
v,weU, e K

“Sv4+weU,0cUUNDMEeU
c(UNW)CV

Basis und Dim

Linear Abbildung: ® : V =V
+ ®(0)=0
(v +w) = A®(v) + (w)

+ Menge aller linearen Abbildung: L(V, W)

Basis:

linear unabhéanige Menge B an v € V, sodass
spann(vy, ..., v, ) = spann(V)

« B ist Erzeugerssystem von V'

« Endliche Erzeugerssystem: | B, | = | B,|...

Linear unabhinige: Linearkombintation in welcher
Ao =0, ..., A, = 0 die EINZIEGE Lésung fiir A\jv, +
e+ A =0

Basiserginzungssatz:

Sei {vy, ...v,, } lin. unabhénig und M kein Basis. Dann

Jv,, . sodass {vy, ...v,,, v, ;1 } lin unabhinig (aber evt.
eine Basis ist)

Dimension: dim V' = #Vektoren der Basis
« dim V' = oo, wenn V nicht endlich erzeugt ist

Abbildungen

fl@)=y,f:A—> B

Injectiv (Monomorphismus):
one to one

f@)=fly) »z=y
Surjectiv (Epimorhismis):
Output space coverered

« Zeigendas f(f~!(z)) =z firz € D
«VzeB:3zcA: f(z)=y
NICHT surjektiv wenn |a| < [b]
Bijektiv (Isomorphismus):
Injectiv und Surjectiv

« In einer Gruppe ist f(z) = zc fiir ¢,z € G bijektiv
« isomorph: V, W VRs, f bijektiv f(V) =W =V =W

Beweify durch Wiederspruch
fiir Gegenbeweify

Endomorphismus: A - Bmit A, B C C

Automorphismus: Endomorphismus und Bijektiv
(Isomorphismus)

Vektorraum-Homomorphismus: linear Abbildung
zwischen VR

Spann und Bild

Spann:
« Vektorraum V : spann(V) = N U
McV
« B:spann(U) = {Agvg + ... + A0, g, .. A, € K}
« spann(®(M)) = ®(spann(M))

—1—

Urbild: f~'(ICcB)CA

Bild: Wertemenge W

« fICA) =BORI=A4)
» Basis B : spann(B)

+ Bild®:={®eW |veV}

Nullraum/Kern:
Kern®:={v eV | &(v) = 0}

Rang Rang f := dim Bild f

Dimensionssatz: Sei A lineare Abbildung
dim(V) = dim(kern(A)) + dim(Bild(A))
dim(V') = dim(kern(A)) + Rang(A)

dim(V) = dim(Bild(A)) oder dim(kern(A)) =0

< A bijektiv < invertierbar
Determinate und Bilinearform
Eukldische Vektorraume

Unitair Vektorraume

Matrix Typen
m Zeilen n Splate
A e Knl,xn
Q13 Q12 - C1p
Qgq Qg ... Qg,
: P m A
Am1 Am2 - Cmp
N

n

Einheits Matrix

I,E
Diagonalmatrix Nur Eintréger auf
3, D Hauptdiagonalen
det(D) = dgg - dyy  da - ...
Symetrisch S =58T 8§ K"

S AAT AT A ist symetrisch
S immer diagonaliserbar
EW immer € R, EV
orthogonal

Invertierbar JA 1 AA ' =ATA=F

Invertierbar wenn:
A bijektiv, det(4) =0




1. EW bestimmen: det(A — AI) =0 1. Als Matrix Schreiben F : (z;‘l) = ( . )

Spalten Vekoren lin. unabhégi n Tt
det(4) = 0 . sxa= =A™ - A Fs,  —s,
2. EV bestimmen: spann(kern(A — X\, 1)): ry, 7y, ... ) i _ -
Nicht Invertierbar wenn: 3. 2. Diagonaliseren: F' = RDR
=i i i Lo — n p—1
2 EW 70 :>_ mvertle.rbar Diagnoalmatrix: D Basiswechselmatrix: R ¢ iz bolls Aurraading: RD"R
Keine Qudratische Matrix AL 0 O .. L] o
Orthogonal o —o i I i Differenzialgleichungen
0] (Ov, Ow) = (v, w) PR
Uniair v O swzeres
Diagonaliserbar JA = BDB™!, D diagonal, immer anwendbar;

B: Splaten sind EV von A

. Selbst-Adujunkte s

diagonalisierbar A € R™" gerlegbar in A = LSRT
+ Symetrisch Matrix
. A€ K™ ANDalg()) = LeR Qrthogonal

geo(\) S € R™*" Diagonal

R € R™*™ Orthogonal
1. AAT berechnen AAT € R™*™
2. AAT diagonalisieren in R, D

postiv-semi-definit | VEW >0

3. Singularwere berechen: o; = /),

A € C™™ : n Complexe Eigenwerte 4 [ o |
A € R . li = U%,A'UM‘ L= lf lIl lf‘n
1. Eigentwete bestimmen (Evt. zu ONB ergenze mit Gram-Schmit/
Av = v = det(A — EX) =0 LS ggise o)
B, T, .. my, 5. § € R™™ (wie A):
O=det| == HEE: - = ® fl oo 0 . 0
ZTn1 Tpo o Bpp—An S = g 8 S= (0 oy 0)
0 0
—rxa = =N (A =X
Ags A1y ... = Nst von x 4 Matrix Normen
2. Eigenvektor bestimmen | - | o Matrix Norm, | - ||y Vektornorm
Eig(\;) = kern(4 — A E) Generisch Vektor Norm: || v |, = 3/>°7 | (x;)°
Ti—A i o @i v 0 Lo X
E e o B + submultiplikativ: | AB| < [A]|B]
I;Ll 17..2 mm'_)‘k v’n . « vertraglich mit einer Vektornorm: [|Av|y < |Afy [vlv

g _ m n
Algebrasche Vielfacheit: alg(\) = ng + nq + ... Frobenius-Norm ||y = /307, Ej:l U

)
Geometrische Vielfacheit: geo()\) = dim(Eig 4 (X)) Induzierte Norm || Al = SUPLevn (o) IImHv
v

— |Av]
1 < geo(A) < alg(X) = SUp|,| =1 To,~
« submultiplikativ
« vertraglich mit einer Vektornorm || - |y

il

maximale Spaltensumme || A, = max;;,, Z;L:l|a

Rekursive Folgen
A=RDR!

Rezept Diagonalisierung Eg a2, 1 + 038, = Tnpy
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