Compare commits
16 Commits
cccbced541
...
latest
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
6dfe3998e1 | ||
|
|
421ddd1f6d | ||
|
|
ecdc00b4b2 | ||
|
|
8b24c9ea8e | ||
|
|
740384a433 | ||
|
|
0f9aed8b07 | ||
|
|
d8769ca440 | ||
|
|
6cdd323198 | ||
|
|
d3c51d5ee7 | ||
|
|
ae64e72fd4 | ||
|
|
db9a34579f | ||
|
|
3eac461f7a | ||
|
|
b16009f62a | ||
|
|
a617d285f2 | ||
|
|
50744d9155 | ||
|
|
95f83c8291 |
@@ -7,16 +7,13 @@ on:
|
||||
pull_request:
|
||||
branches: [ "**" ]
|
||||
|
||||
env:
|
||||
TYPST_SOURCE_DIR: src
|
||||
BUILD_DIR: build
|
||||
|
||||
jobs:
|
||||
build-typst:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
# Run the whole job inside a Docker container that has Typst installed
|
||||
steps:
|
||||
- uses: typst-community/setup-typst@v4
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
@@ -27,38 +24,25 @@ jobs:
|
||||
- name: Debug Ls
|
||||
run: ls -la "$PWD" && echo "$PWD && echo ${{ github.workspace }}"
|
||||
|
||||
- name: Build Typst builder image
|
||||
uses: docker/build-push-action@v2
|
||||
with:
|
||||
tags: typst-builder-image:latest
|
||||
push: false
|
||||
- name: Make build directory
|
||||
run: mkdir -p build
|
||||
|
||||
- name: Compile all .typ files
|
||||
uses: addnab/docker-run-action@v3
|
||||
env:
|
||||
TYPST_SOURCE_DIR: ${{ env.TYPST_SOURCE_DIR }}
|
||||
BUILD_DIR: ${{ env.BUILD_DIR }}
|
||||
with:
|
||||
image: typst-builder-image:latest
|
||||
options: --volumes-from=${{ env.JOB_CONTAINER_NAME }}
|
||||
cwd: ${{ github.workspace }}
|
||||
run: "cd ${{ github.workspace }} && TYPST_SOURCE_DIR=${{ env.TYPST_SOURCE_DIR }} BUILD_DIR=${{ env.BUILD_DIR }} bash -c ./compile-all.bash"
|
||||
- name: Compile Analysis1
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Analysis1.typ build/Analysis1.pdf
|
||||
|
||||
- name: Upload PDFs
|
||||
if: always()
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
name: typst-pdfs
|
||||
path: ${{ env.BUILD_DIR }}/*.pdf
|
||||
if-no-files-found: warn
|
||||
- name: Compile Schaltungstheorie
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Schaltungstheorie.typ build/Schaltungstheorie.pdf
|
||||
|
||||
- name: Compile LinAlg
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/LinearAlgebra.typ build/LinearAlgebra.pdf
|
||||
|
||||
- name: Create Gitea Release
|
||||
uses: softprops/action-gh-release@v1
|
||||
continue-on-error: true
|
||||
uses: akkuman/gitea-release-action@v1
|
||||
with:
|
||||
tag_name: ${{ steps.tag.outputs.tag }}
|
||||
name: Typst PDFs ${{ steps.tag.outputs.tag }}
|
||||
body: |
|
||||
Automated release of Typst-generated PDFs.
|
||||
|
||||
Commit: ${{ github.sha }}
|
||||
files: ${{ env.BUILD_DIR }}/*.pdf
|
||||
name: "Formelsammlungen PDFs"
|
||||
tag_name: "latest"
|
||||
files: build/*.pdf
|
||||
8
.gitignore
vendored
8
.gitignore
vendored
@@ -1 +1,7 @@
|
||||
venv
|
||||
.venv
|
||||
out
|
||||
node_modules
|
||||
__pycache__/
|
||||
|
||||
package-lock.json
|
||||
package.json
|
||||
17
.vscode/tasks.json
vendored
17
.vscode/tasks.json
vendored
@@ -1,17 +0,0 @@
|
||||
{
|
||||
"tasks": [
|
||||
{
|
||||
"label": "Compile All",
|
||||
"type": "shell",
|
||||
"command": "TYPST_SOURCE_DIR=src BUILD_DIR=output ./compile-all.bash",
|
||||
"group": {
|
||||
"kind": "build",
|
||||
"isDefault": true
|
||||
},
|
||||
"problemMatcher": [],
|
||||
"options": {
|
||||
"cwd": "${workspaceFolder}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
4135
build/Analysis1.pdf
Normal file
4135
build/Analysis1.pdf
Normal file
File diff suppressed because one or more lines are too long
@@ -1,31 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -euo pipefail
|
||||
SRC_DIR="${TYPST_SOURCE_DIR}"
|
||||
OUT_DIR="${BUILD_DIR}"
|
||||
|
||||
if [[ ! -d "$SRC_DIR" ]]; then
|
||||
echo "Source directory '$SRC_DIR' does not exist."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mkdir -p "$OUT_DIR"
|
||||
|
||||
|
||||
# Find all .typ files under $SRC_DIR (excluding hidden dirs)
|
||||
mapfile -d '' files < <(printf '%s\0' "$SRC_DIR"/*.typ 2>/dev/null)
|
||||
|
||||
if [[ ${#files[@]} -eq 0 ]]; then
|
||||
echo "No .typ files found in '$SRC_DIR'."
|
||||
exit 0
|
||||
fi
|
||||
|
||||
for f in "${files[@]}"; do
|
||||
# Trim leading ./ if present
|
||||
rel="${f#./}"
|
||||
# Destination path: build/<same-subdirs>/<filename>.pdf
|
||||
dest_pdf="${OUT_DIR}/$(basename "${rel%.typ}").pdf"
|
||||
|
||||
echo "Compiling: $f -> $dest_pdf"
|
||||
typst compile "$f" "$dest_pdf"
|
||||
done
|
||||
7086
out/Analysis1.pdf
7086
out/Analysis1.pdf
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Binary file not shown.
BIN
reihen_plot.png
BIN
reihen_plot.png
Binary file not shown.
|
Before Width: | Height: | Size: 102 KiB |
@@ -1,17 +0,0 @@
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
f = lambda x_prev: 1/4 * (x - 3)
|
||||
x = 0
|
||||
|
||||
reihe = [x]
|
||||
|
||||
for i in range(100):
|
||||
x = f(x)
|
||||
reihe.append(x)
|
||||
|
||||
plt.plot(reihe, marker='o', linestyle='-')
|
||||
plt.title("Reihen Plot")
|
||||
plt.xlabel("n")
|
||||
plt.ylabel("x_n")
|
||||
plt.grid()
|
||||
plt.savefig("reihen_plot.png", dpi=500)
|
||||
@@ -1,259 +0,0 @@
|
||||
#import "@preview/biceps:0.0.1": *
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
#import "lib/styles.typ": *
|
||||
#import "lib/common.typ": *
|
||||
|
||||
#show: stdTemplate
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
stdBlock([
|
||||
== #hlHeading([Trig Identitäten])
|
||||
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
|
||||
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||
$sin(2x) = 2sin(x)cos(x)$
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos^2(x) = (1 + cos(2x))/2$],
|
||||
[$sin^2(x) = (1 - cos(2x))/2$]
|
||||
)
|
||||
|
||||
$cos^2(x) + sin^2(x) = 1$
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
columns: (auto, auto),
|
||||
[$cos(-x) = cos(x)$],
|
||||
[$sin(-x) = -sin(x)$],
|
||||
)
|
||||
|
||||
Subsitution mit Hilfsvariable
|
||||
|
||||
#grid(
|
||||
gutter: 5mm,
|
||||
row-gutter: 3mm,
|
||||
columns: (auto, auto),
|
||||
[$tan(x)=sin(x)/cos(x)$],
|
||||
[$cot(x)=cos(x)/sin(x)$],
|
||||
[$tan(x)=-cot(x + pi/2)$],
|
||||
[$cot(x)=-tan(x + pi/2)$],
|
||||
[$cos(x - pi/2) = sin(x)$],
|
||||
[$sin(x + pi/2) = cos(x)$],
|
||||
)
|
||||
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
|
||||
|
||||
Für $x in [-1, 1]$ \
|
||||
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
|
||||
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
||||
])
|
||||
)
|
||||
#place(
|
||||
top + left,
|
||||
dx: 6.5cm,
|
||||
sinTable
|
||||
)
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
dx: 0cm,
|
||||
dy: 8cm,
|
||||
stdBlock([
|
||||
#grid(
|
||||
columns:(auto, auto),
|
||||
gutter: 1mm,
|
||||
[
|
||||
== #hlHeading([Folgen])
|
||||
$ lim_(x->infinity) a_n $
|
||||
- *Beschränkt*: $exists k in RR$ so dass $abs(a_n) <= k$
|
||||
- $epsilon$-Interval: $x in (a - epsilon, a + epsilon) <=> abs(x - a) < epsilon$
|
||||
- *Beweiß:* Induktion
|
||||
- Hat min. eine konvergent Teilfolge
|
||||
|
||||
- *Monoton: steigen/fallend* $a_(n+1) gt.eq.lt a_n$
|
||||
- *Beweisen:* Induktion mit \ $a_(n+1) gt.eq.lt a_n$ oder $a_(n+1) / a_(n) gt.lt 1 $ oder Umformung
|
||||
|
||||
- *Konvergent*:
|
||||
- Es gibt $forall epsilon > 0$ eine Index $n_epsilon in NN$ sodass \ $abs(a_n - a) < epsilon space forall n > n_epsilon$
|
||||
- Divergent $-> infinity$, wenn $forall k in RR : exists space a_n > k$
|
||||
- Divergent $-> -infinity$, wenn $forall k in RR : exists space a_n < k$
|
||||
- Genzwert is eindeutig
|
||||
|
||||
- *Konvergenz $a_n -> a$ $<=>$ beschränkt UND monoton*
|
||||
- $<=>$ Alle Teilefolgen konvergent zu $a$
|
||||
- Wenn Häufungspunk $eq.not$ $=>$ divergent
|
||||
- Sandwitch-Theorem
|
||||
|
||||
- *Cauchyfolge*
|
||||
Ein folge die diese Eigenschaft hat: \
|
||||
$forall epsilon > 0 space exists N_epsilon in NN space forall m,n > N_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $<=>$ Konvergenz
|
||||
],
|
||||
grid.vline(stroke: 0.1mm + black, position: start),
|
||||
pad([
|
||||
=== Grenzwert Finden:
|
||||
- "Bottom up" von Bekannten Ausdrücken
|
||||
- Fixpunk Gleösenichung l $a = f(a)$ für $f(a_n)$
|
||||
- Bernoulli-Ungleichung für $(a_n)^n$ \
|
||||
$(1 + a)^n >= 1 + n a$ für $a >= -1$
|
||||
- #MathAlignLeft($1 + u <= 1/(1-u), u < 1$)
|
||||
|
||||
Für Konvergent Folgen:
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
align: bottom,
|
||||
gutter: 2mm,
|
||||
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
|
||||
grid.cell(
|
||||
rowspan: 2,
|
||||
[$ lim_(n->infinity) (a_n / b_n) = a / b $],
|
||||
),
|
||||
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
|
||||
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
|
||||
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
||||
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
||||
)
|
||||
|
||||
== Spezifische Folgen
|
||||
#grid(
|
||||
columns: (auto, auto, auto),
|
||||
column-gutter: 4mm,
|
||||
row-gutter: 2mm,
|
||||
align: bottom,
|
||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $)), [],
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
||||
)
|
||||
|
||||
== Teilfolgen
|
||||
- Indizies müssen immer streng monoton \
|
||||
wachsend sein. (z.B. is $a_1, a_1, a_2, a_2$ KEIN\
|
||||
Teilfolge von $a_n$)
|
||||
- Beschränkte $a_n$ $=>$ *min eine* \
|
||||
konvergent Teilfolge
|
||||
- Konvergent $a_n$ $=>$ *genau ein* Häufungspunkt
|
||||
|
||||
|
||||
], left: 1mm)
|
||||
)
|
||||
])
|
||||
)
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
dx: 13cm,
|
||||
dy: 0cm,
|
||||
stdBlock([
|
||||
== #hlHeading([Reihen])
|
||||
|
||||
Wenn $sum_(n=1)^infinity a_n$ konverigiert $=>$ $a_n$ Nullfolge \
|
||||
Wenn $a_n$ keine Nullfolge $=>$ $sum_(n=1)^infinity$ divergent
|
||||
|
||||
=== Absolute Konvergenz
|
||||
Bedeuted $sum_(n=1)^infinity abs(a_n) = a ==> sum_(n=1)^infinity a_n$ konvergent
|
||||
|
||||
$sum_(n=1)^infinity abs(a_n)$ beschränkt + (monoto steigended) $= sum_(n=1)^infinity abs(a_n)$
|
||||
|
||||
=== Partialsummen
|
||||
Sind die Partialsummen von $sum_(k=1)^infinity abs(a)$ beschränkt\
|
||||
$==>$ _Absolute Konvergent_
|
||||
|
||||
=== Cauchy-Kriterium
|
||||
konvergent wenn $forall epsilon$ existiert ein $n_epsilon in NN$ \
|
||||
sodass $abs(s_n - s_m) = abs(sum_(k=m+1)^(n)) < epsilon space$ \
|
||||
$forall n_epsilon < m < n $
|
||||
|
||||
=== Leibnitzkriterium
|
||||
Wenn monton fallend, $a_n >= 0$, Null folge dann
|
||||
|
||||
$sum_(n=1)^infinity (-1)^n dot a_n$ konvergent
|
||||
|
||||
=== Majorandenkriterium
|
||||
Seien $a_n, b_n$ mit $abs(a_n) <= b_n space (forall n > N, N in NN)$
|
||||
1. $sum_(n=0)^infinity b_n$ konvergent $==> sum_(n=0)^infinity abs(a_n)$ konvergent \
|
||||
Suche $b_n$ für Konvergenz
|
||||
2. $sum_(n=0)^infinity abs(a_n)$ divergent $==> sum_(n=0)^infinity b_n$ divergent \
|
||||
Suche $abs(a_n)$ für Divergenz
|
||||
|
||||
Nützlich:
|
||||
- Dreiecksungleichung
|
||||
- $forall space n in NN$ \
|
||||
$exists space k,q in RR$ \
|
||||
für $q > 1$: $n^k <= q^n$ ab einem bestimmten.
|
||||
|
||||
=== Quotientenkriterium und Wurzelkriterium
|
||||
1. $rho = lim_(n -> infinity) abs((a_(n+1))/(a_n)) $
|
||||
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
|
||||
(Stärker, am besten für $(...)^n$)
|
||||
|
||||
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||
=== Spezifische Reihen
|
||||
Geometrische Reihe: $sum_(n=0)^infinity q^n$
|
||||
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
Harmonische Reihe: $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
1. $e^x = sum_(n=0)^infinity (x^n)/(n!)$
|
||||
2. $ln(x) = sum_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
])
|
||||
)
|
||||
|
||||
#place(
|
||||
top+left,
|
||||
dx: 0cm,
|
||||
dy: 20cm,
|
||||
stdBlock([
|
||||
== Kriterien Übersich für Reihen $sum_(n=0)^infinity a_n$
|
||||
#line()
|
||||
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
gutter: 3mm,
|
||||
[
|
||||
*Notwendinge Kriterien*\
|
||||
($not$ Bedingung $=>$ div.)
|
||||
- Cauchy-Kriterium
|
||||
- #MathAlignLeft($ lim_(n->infinity)a_n = 0 $)
|
||||
- Konvergenz der Partialsummen
|
||||
- Beschränktheit der Partialsummen
|
||||
],
|
||||
[
|
||||
*Hinreichende Kriterien* \
|
||||
(Bedingung $=>$ konv.)
|
||||
- Absolute Konvergenz
|
||||
- Leibnitz-Kroterium
|
||||
- Beschränktheit der Partialsummen
|
||||
- Quotienten-/Wurzel-kriterium
|
||||
- Majorandenkriterium
|
||||
]
|
||||
)
|
||||
])
|
||||
)
|
||||
|
||||
#pagebreak()
|
||||
#place(
|
||||
left+top,
|
||||
dx: 0cm,
|
||||
dy: 0cm,
|
||||
stdBlock([
|
||||
== #hlHeading([Funktionen])
|
||||
=== Stetigkeit
|
||||
Stetig an der stelle $x_0$ wenn: $ lim_(x->x_0+) f(x) = lim_(x->x_0-) f(x) =f(x_0) $
|
||||
$f(x)$ muss nicht definiert sein an $x_0$
|
||||
=== Differenzierbar
|
||||
An der stelle $x_0$ wenn
|
||||
#MathAlignLeft($
|
||||
lim_(h -> 0) (f(x_0 + h)-f(x_0))/h =\
|
||||
lim_(h -> 0) (f(x_0 - h)-f(x_0))/h = f'(x)
|
||||
$)
|
||||
definiert ist
|
||||
|
||||
])
|
||||
)
|
||||
File diff suppressed because one or more lines are too long
@@ -1,4 +1,5 @@
|
||||
#import "lib/common_rewrite.typ" : *
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
@@ -9,12 +10,15 @@
|
||||
right: 5mm
|
||||
),
|
||||
flipped:true,
|
||||
numbering: "— 1 —",
|
||||
number-align: center
|
||||
footer: context [
|
||||
#grid(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
|
||||
#set text(
|
||||
size: 8pt,
|
||||
],
|
||||
)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
@@ -72,32 +76,6 @@
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Trigonometrie]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#table(
|
||||
inset: 1.5mm,
|
||||
stroke: (thickness: 0.2mm),
|
||||
columns: 4,
|
||||
table.header(
|
||||
[x], [deg], [cos(x)], [sin(x)]
|
||||
),
|
||||
[$0$], [$0°$], [$1$], [$0$],
|
||||
[$pi/6$], [$30°$], [$sqrt(3)/2$], [$1/2$],
|
||||
[$pi/4$], [$45°$], [$sqrt(2)/2$], [$sqrt(2)/2$],
|
||||
[$pi/3$], [$60°$], [$1/2$], [$sqrt(3)/2$],
|
||||
[$pi/2$], [$90°$], [$0$], [$1$],
|
||||
[$2/3pi$], [$120°$], [$-1/2$], [$sqrt(3)/2$],
|
||||
[$3/4pi$], [$135°$], [$-sqrt(2)/2$], [$sqrt(2)/2$],
|
||||
[$5/6pi$], [$150°$], [$-sqrt(3)/2$], [$1/2$],
|
||||
[$pi$], [$180°$], [$-1$], [$0$],
|
||||
[$3/2pi$], [$270°$], [$0$], [$-1$],
|
||||
[$2pi$], [$360°$], [$1$], [$0$]
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
||||
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
||||
@@ -110,9 +88,13 @@
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
|
||||
)
|
||||
#subHeading(fill: colorAllgemein)[Trigonmetrie]
|
||||
*Additionstheorem* \
|
||||
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
|
||||
|
||||
*Doppelwinkel Formel* \
|
||||
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||
$sin(2x) = 2sin(x)cos(x)$
|
||||
|
||||
@@ -467,9 +449,34 @@
|
||||
)
|
||||
])
|
||||
|
||||
#colbreak()
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#pagebreak()
|
||||
|
||||
== Folgen in $CC$
|
||||
@@ -517,3 +524,23 @@ Konvergenz Radius $R = [0, infinity)$$$
|
||||
)$
|
||||
|
||||
$ R = limsup_(n -> infinity) $
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#import "@preview/biceps:0.0.1" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
#import "lib/styles.typ" : *
|
||||
#import "lib/common_rewrite.typ" : *
|
||||
#import "../lib/styles.typ" : *
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
208
src/cheatsheets/Schaltungstheorie.typ
Normal file
208
src/cheatsheets/Schaltungstheorie.typ
Normal file
@@ -0,0 +1,208 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
#import "@preview/zap:0.5.0"
|
||||
|
||||
#show math.equation.where(block: true): it => math.inline(it)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
bottom: 10mm,
|
||||
top: 5mm,
|
||||
left: 5mm,
|
||||
right: 5mm
|
||||
),
|
||||
flipped:true,
|
||||
footer: context [
|
||||
#grid(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorEineTore = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorZweiTore = color.hsl(235.9deg, 92.13%, 75.1%)
|
||||
#let colorAnalyseVerfahren = color.hsl(280deg, 92.13%, 75.1%)
|
||||
#let colorComplexAC = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
#let colorMathe = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Schaltungstheorie]
|
||||
))
|
||||
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Quelle Wandlung]
|
||||
|
||||
#zap.circuit({
|
||||
import zap: *
|
||||
set-style(scale: (x: 0.75, y:0.75), fill: none)
|
||||
resistor("R1", (-2, 0), (0, 0))
|
||||
vsource("V1", (-2, 0), (-2, -2))
|
||||
wire((-2, -2), (0, -2))
|
||||
node("n1", (0, 0), label: "1")
|
||||
node("n2", (0, -2), label: "2")
|
||||
})
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Graphen und Matrizen]
|
||||
|
||||
$bold(i_b)$ (oder $bold(i)$): Zweigstrom-Vektor \
|
||||
$bold(u_b)$ (oder $bold(u)$): Zweigspannungs-Vektor \
|
||||
$bold(i_m)$ : Maschenstrom-Vektor \
|
||||
#text(rgb(20%, 20%, 20%))[(Strom in einer viruellen Masche)] \
|
||||
$bold(u_k)$ : Kontenspannungs-Vektor \
|
||||
#text(rgb(20%, 20%, 20%))[(Spannung zwischen Referenzknoten und Knoten k)] \
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
Knotenzidenzmatrix $bold(A)$
|
||||
|
||||
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
|
||||
$bold(A^T) : bold(u_b)-> bold(u_k)$
|
||||
$
|
||||
bold(A) = quad mannot.mark(mat(
|
||||
a_11, a_12, ..., a_(1m);
|
||||
a_21, a_22, ..., a_(2m);
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
a_(n 1), a_(n 2), ..., a_(n m)
|
||||
), tag: #<1>)
|
||||
|
||||
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Knoten]], dx: 5mm)
|
||||
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
|
||||
|
||||
a in {-1, 0, 1}
|
||||
$
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
Mascheninsidenz Matrix $bold(B)$\
|
||||
|
||||
|
||||
$bold(B) : bold(u_b) -> text("Zweigspannungsbilanz") = 0$ \
|
||||
$bold(B^T) : bold(i_m) -> i_b$
|
||||
|
||||
$
|
||||
bold(B) = quad mannot.mark(mat(
|
||||
b_11, b_12, ..., b_(1m);
|
||||
b_21, b_22, ..., b_(2m);
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
b_(n 1), b_(n 2), ..., b_(n m)
|
||||
), tag: #<1>)
|
||||
|
||||
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Maschen]], dx: 6mm)
|
||||
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
|
||||
|
||||
b in {-1, 0, 1}
|
||||
$
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
*KCL und KVL* \
|
||||
|
||||
KCL in Nullraum: $ bold(A) bold(i_b) = bold(0)$ \
|
||||
KVL in Bildraum: $ bold(A^T) bold(u_k) = bold(u_b)$
|
||||
|
||||
KVL in Nullraum: $bold(B) bold(u_b) = bold(0)$ \
|
||||
KCL in Bildraum: $bold(B^T) bold(i_m) = bold(i_b)$ \
|
||||
|
||||
*Tellegen'sche Satz* \
|
||||
$bold(A B^T) = bold(B^T A) = 0$ \
|
||||
$bold(u_b^T i_b) = 0$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Machenstrom-/Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#show table.cell: it => pad(),
|
||||
|
||||
#table(
|
||||
columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
gutter: 0.1mm,
|
||||
[In $->$], $bold(R)$, $bold(G)$, $bold(H)$, $bold(H')$, $bold(A)$, $bold(A')$,
|
||||
|
||||
$bold(R)$,
|
||||
$mat(r_11, r_12; r_21, r_22)$,
|
||||
$1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
||||
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
||||
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
||||
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
||||
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
||||
|
||||
$bold(G)$,
|
||||
$1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
||||
$mat(g_11, g_12; g_21, g_22)$,
|
||||
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
||||
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
||||
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
|
||||
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
|
||||
|
||||
$bold(H)$,
|
||||
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
||||
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
||||
$mat(h_11, h_12; h_21, h_22)$,
|
||||
$1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
||||
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
||||
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
||||
|
||||
$bold(H')$,
|
||||
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
||||
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
||||
$1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
||||
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
||||
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
||||
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
||||
|
||||
$bold(A)$,
|
||||
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
|
||||
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
|
||||
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
||||
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
||||
$mat(a_11, a_12; a_21, a_22)$,
|
||||
$1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
||||
|
||||
$bold(A')$,
|
||||
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
||||
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
||||
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
||||
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
||||
$1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
||||
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
]
|
||||
|
||||
BIN
src/images/cc0.png
Normal file
BIN
src/images/cc0.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 980 B |
@@ -26,3 +26,20 @@
|
||||
#let MathAlignLeft(e) = {
|
||||
align(left, block(e))
|
||||
}
|
||||
|
||||
#let sinTable = [
|
||||
#let data = json("../sintable.json")
|
||||
#table(
|
||||
columns: data.at("x").len() + 1,
|
||||
rows: data.keys().len(),
|
||||
stroke: none,
|
||||
table.hline(stroke: (thickness: 0.3mm)),
|
||||
fill: (x, y) => if (calc.rem(y, 2) == 0) { color.lighten(gray, 50%) } else { white },
|
||||
..for (label) in data.keys() {
|
||||
([*#eval(label, mode: "math")*], table.hline(stroke: (thickness: 0.3mm)), )
|
||||
for i in data.at(label) {
|
||||
(eval(i, mode: "math"),)
|
||||
}
|
||||
}
|
||||
)
|
||||
]
|
||||
18
src/sintable.json
Normal file
18
src/sintable.json
Normal file
@@ -0,0 +1,18 @@
|
||||
|
||||
{
|
||||
"x": [
|
||||
"0", "pi/6", "pi/4", "pi/3", "pi/2", "(2pi)/3", "(3pi)/4", "(5pi)/6", "pi", "(7pi)/6", "(5pi)/4", "(4pi)/3", "(3pi)/2", "(5pi)/3", "(7pi)/4", "(11pi)/6", "2pi"
|
||||
],
|
||||
"alpha": [
|
||||
"0°", "30°", "45°", "60°", "90°", "120°", "135°", "150°", "180°", "210°", "225°", "240°", "270°", "300°", "315°", "330°", "360°"
|
||||
],
|
||||
"cos(x)": [
|
||||
"1", "sqrt(3)/2", "sqrt(2)/2", "1/2", "0", "-1/2", "-sqrt(2)/2", "-sqrt(3)/2", "-1", "-sqrt(3)/2", "-sqrt(2)/2", "-1/2", "0", "1/2", "sqrt(2)/2", "sqrt(3)/2", "1"
|
||||
],
|
||||
"sin(x)": [
|
||||
"0", "1/2", "sqrt(2)/2", "sqrt(3)/2", "1", "sqrt(3)/2", "sqrt(2)/2", "1/2", "0", "-1/2", "-sqrt(2)/2", "-sqrt(3)/2", "-1", "-sqrt(3)/2", "-sqrt(2)/2", "-1/2", "0"
|
||||
],
|
||||
"tan(x)": [
|
||||
"0", "1/sqrt(3)", "1", "sqrt(3)", "x", "-sqrt(3)", "-1", "-1/sqrt(3)", "0", "1/sqrt(3)", "1", "sqrt(3)", "x", "-sqrt(3)", "-1", "-1/sqrt(3)", "0"
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user