Compare commits
8 Commits
c9a3cdfcdb
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f73195234f | ||
|
|
c169e3eca4 | ||
|
|
fb472fb022 | ||
|
|
5356c01c04 | ||
|
|
b5998fe513 | ||
|
|
7e30cfee79 | ||
|
|
83aa6764fe | ||
|
|
ad2c7f2919 |
@@ -43,6 +43,11 @@ jobs:
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/Digitaltechnik.typ "build/sem1-Digitaltechnik.pdf"
|
||||
|
||||
- name: Compile CT
|
||||
continue-on-error: true
|
||||
run: typst compile --root src src/cheatsheets/CT.typ "build/sem1-Computertechnik.pdf"
|
||||
|
||||
|
||||
- name: Create Gitea Release
|
||||
continue-on-error: true
|
||||
uses: akkuman/gitea-release-action@v1
|
||||
|
||||
154
src/cheatsheets/CT.typ
Normal file
154
src/cheatsheets/CT.typ
Normal file
@@ -0,0 +1,154 @@
|
||||
#import "../lib/styles.typ" : *
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
bottom: 10mm,
|
||||
top: 5mm,
|
||||
left: 5mm,
|
||||
right: 5mm
|
||||
),
|
||||
flipped:true,
|
||||
numbering: "— 1 —",
|
||||
number-align: center
|
||||
)
|
||||
|
||||
#set text(size: 8pt)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Computer Technik/Programmierpraktikum EI]
|
||||
))
|
||||
|
||||
#let Allgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorProgramming = color.hsl(330.19deg, 100%, 68.43%)
|
||||
#let colorNumberSystems = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
// #let colorVR = color.hsl(280deg, 92.13%, 75.1%)
|
||||
// #let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
// #let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
|
||||
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||
#let MathAlignLeft(e) = {
|
||||
align(left, block(e))
|
||||
}
|
||||
#columns(2, gutter: 2mm)[
|
||||
#bgBlock(fill: colorNumberSystems)[
|
||||
#subHeading(fill: colorNumberSystems)[ASCII Ranges]
|
||||
|
||||
#table(
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[Range], [Hex], [Bits],
|
||||
[Upper Case], raw("0x41-0x5A"), [#raw("010XXXXX") (bit 6)],
|
||||
[Lower Case], raw("0x61-0x7A"), [#raw("011XXXXX") (bit 6)],
|
||||
[Numbers (0-9)], raw("0x30-0x39"), [#raw("0011XXXX")],
|
||||
[Ganz ASCII], raw("0x00-0x7F"), [#raw("0XXXXXXX")],
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorNumberSystems)[
|
||||
#subHeading(fill: colorNumberSystems)[Einer-Kompilment, Zweier-Kompliment, Float (IEEE 754)]
|
||||
|
||||
*Float (IEEE 754)*
|
||||
|
||||
#cetz.canvas({
|
||||
import cetz.draw : *
|
||||
let cell_size = 0.3;
|
||||
|
||||
let manntise_stop = 22;
|
||||
let exponent_start = 23;
|
||||
let exponent_stop = 30;
|
||||
let sign_bit = 31;
|
||||
let total_bits = sign_bit + 1;
|
||||
|
||||
|
||||
for i in range(total_bits) {
|
||||
let bit = 31 - i;
|
||||
|
||||
rect((i*cell_size, 0), (i*cell_size+cell_size, 0.5),
|
||||
fill: if bit == sign_bit { rgb("#8fff57") } else {
|
||||
if ( bit >= exponent_start and bit <= exponent_stop) { rgb("#ffe057") } else { if (bit <= manntise_stop) {rgb("#57a5ff")} else { white } }
|
||||
},
|
||||
stroke: (thickness: 0.2mm)
|
||||
)
|
||||
|
||||
content((i*cell_size + 0.5*cell_size, 0.25), raw(str(0)))
|
||||
}
|
||||
|
||||
content((cell_size, 0.7), [sign], anchor: "east")
|
||||
content((5*cell_size, 0.7), [Exponent (#str(exponent_stop - exponent_start + 1) bit)])
|
||||
content((20*cell_size, 0.7), [Mantisse/Wert (#str(manntise_stop+1) bit)])
|
||||
|
||||
rect((0,0), (32*cell_size, 0.5))
|
||||
|
||||
content((cell_size*(total_bits - sign_bit), -0.2), anchor: "south", raw(str(sign_bit)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits - exponent_stop), -0.2), anchor: "south", raw(str(exponent_stop)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits - exponent_start), -0.2), anchor: "south", raw(str(exponent_start)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits - manntise_stop), -0.2), anchor: "south", raw(str(manntise_stop)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits), -0.2), anchor: "south", raw(str(0)), angle: 90deg)
|
||||
})
|
||||
|
||||
#cetz.canvas({
|
||||
import cetz.draw : *
|
||||
let cell_size = 0.21;
|
||||
|
||||
let manntise_stop = 51;
|
||||
let exponent_start = 52;
|
||||
let exponent_stop = 62;
|
||||
let sign_bit = 63;
|
||||
let total_bits = sign_bit + 1;
|
||||
|
||||
|
||||
for i in range(total_bits) {
|
||||
let bit = sign_bit - i;
|
||||
|
||||
rect((i*cell_size, 0), (i*cell_size+cell_size, 0.5),
|
||||
fill: if bit == sign_bit { rgb("#8fff57") } else {
|
||||
if ( bit >= exponent_start and bit <= exponent_stop) { rgb("#ffe057") } else { if (bit <= manntise_stop) {rgb("#57a5ff")} else { white } }
|
||||
},
|
||||
stroke: (thickness: 0.2mm)
|
||||
)
|
||||
|
||||
content((i*cell_size + 0.5*cell_size, 0.25), raw(str(0)))
|
||||
}
|
||||
|
||||
content((cell_size, 0.7), [sign], anchor: "east")
|
||||
content((7*cell_size, 0.7), [Exponent (#str(exponent_stop - exponent_start + 1) bit)])
|
||||
content((20*cell_size, 0.7), [Mantisse/Wert (#str(manntise_stop+1) bit)])
|
||||
|
||||
rect((0,0), (total_bits*cell_size, 0.5))
|
||||
|
||||
content((cell_size*(total_bits - sign_bit), -0.2), anchor: "south", raw(str(sign_bit)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits - exponent_stop), -0.2), anchor: "south", raw(str(exponent_stop)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits - exponent_start), -0.2), anchor: "south", raw(str(exponent_start)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits - manntise_stop), -0.2), anchor: "south", raw(str(manntise_stop)), angle: 90deg)
|
||||
|
||||
content((cell_size*(total_bits), -0.2), anchor: "south", raw(str(0)), angle: 90deg)
|
||||
})
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorProgramming)[
|
||||
#subHeading(fill: colorProgramming)[C]
|
||||
|
||||
#table(
|
||||
columns: (auto, 1fr),
|
||||
fill: white,
|
||||
raw("restrict", lang: "c"), [
|
||||
Funktions Argument modifier
|
||||
|
||||
Gibt compiler den hint, das eine Pointer nur in der Funktion verwedent wird. Kann besser optimiert werden
|
||||
],
|
||||
raw("volatile", lang: "c"), [
|
||||
Zwingt Compiler den Funktion/Variable nicht wegzuoptimieren
|
||||
]
|
||||
)
|
||||
]
|
||||
]
|
||||
@@ -332,32 +332,33 @@
|
||||
#subHeading(fill: colorMatrixVerfahren)[Diagonalisierung]
|
||||
$A = R D R^(-1)$
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
$D = mat(
|
||||
lambda_1, 0, 0,...;
|
||||
0, lambda_1, 0, ...;
|
||||
0, 0, lambda_2, ...;
|
||||
dots.v, dots.v, dots.v, dots.down
|
||||
)$,
|
||||
|
||||
$D^n = mat(
|
||||
lambda_1^n, 0, 0,...;
|
||||
0, lambda_1^n, 0, ...;
|
||||
0, 0, lambda_2^n, ...;
|
||||
dots.v, dots.v, dots.v, dots.down
|
||||
)$
|
||||
) \
|
||||
|
||||
*Rezept Diagonalisierung*
|
||||
|
||||
1. *EW* bestimmen
|
||||
2. $chi_A$ bestimmen und in $(lambda_0 - lambda)^(n_0) dot (lambda_1 - lambda)^(n_1) ...$ Form bringen \
|
||||
$chi_A$ nicht vollstandig zerfällt (in $RR$), $=>$ NICHT diagonalisierbar
|
||||
3. *EV* bestimmen
|
||||
4. $R = mat( bar, bar, ..; v_(lambda 0), v_(lambda 1), ...; bar, bar, ...)$
|
||||
5. $R^(-1)$ bestimmen
|
||||
]
|
||||
1. EW bestimmen: $det(A - lambda I) = 0$ \
|
||||
$=> chi_A = (lambda_1 - lambda)^(m 1) (lambda_2 - lambda)^(m 2) ...$
|
||||
2. EV bestimmen: $spann(kern(A - lambda_i I))$: $r_0, r_1, ...$
|
||||
3. \
|
||||
#grid(columns: (1fr, 1fr),
|
||||
[
|
||||
Diagnoalmatrix: $D$
|
||||
$mat(
|
||||
lambda_1, 0, 0,...;
|
||||
0, lambda_1, 0, ...;
|
||||
0, 0, lambda_2, ...;
|
||||
dots.v, dots.v, dots.v, dots.down
|
||||
)
|
||||
$
|
||||
],
|
||||
[
|
||||
Basiswechselmatrix: $R$
|
||||
$mat(
|
||||
|, | , ..., |;
|
||||
r_0, r_1, ..., r_n;
|
||||
|, |, ..., |
|
||||
)$
|
||||
]
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
#bgBlock(fill: colorMatrixVerfahren)[
|
||||
@@ -368,31 +369,24 @@
|
||||
#bgBlock(fill: colorMatrixVerfahren)[
|
||||
#subHeading(fill: colorMatrixVerfahren)[SVD]
|
||||
|
||||
$A in RR^(m times n)$ zerlegbar in $A = U Sigma V^T$ \
|
||||
$A in RR^(m times n)$ zerlegbar in $A = L S R^T$ \
|
||||
|
||||
|
||||
$U in RR^(m times m)$ Orthogonal \
|
||||
$Sigma in RR^(m times n)$ Diagonal \
|
||||
$V in RR^(n times n)$ Orthogonal
|
||||
$L in RR^(m times m)$ Orthogonal \
|
||||
$S in RR^(m times n)$ Diagonal \
|
||||
$R in RR^(n times n)$ Orthogonal
|
||||
|
||||
|
||||
1. $A^T A$ berechnen $A^T A in RR^(k times k), k = min(n, m)$
|
||||
1. $A A^T$ berechnen $A A^T in RR^(m times m)$
|
||||
|
||||
2. Eigenwerte bestimmen $det(A^T A - E lambda) = 0$ \
|
||||
$lambda_0, lambda_1 ... lambda_k$ nach Größe sortieren \
|
||||
Singulärewerte: $sigma_i = sqrt(lambda_i)$
|
||||
2. $A A^T$ diagonalisieren in $R$, $D$
|
||||
|
||||
3. Eigenvekoren von $A^T A$ bestimmen und *Normalisieren*
|
||||
$v_(lambda 0), v_(lambda 1), ... v_(lambda k)$
|
||||
3. Singulärwere berechen: $sigma_i = sqrt(lambda_i) $
|
||||
|
||||
4. $V = mat( |, |, ..., |; v_0, v_1, ..., v_n; |, |, ..., |) --> V^T$ \
|
||||
4. $l_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; l_0, l_1, ..., l_m; |, |, ..., |)$ \
|
||||
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
|
||||
|
||||
5. $u_i = 1/sigma_i A v_(lambda i) quad quad L = mat( |, |, ..., |; u_0, u_1, ..., u_m; |, |, ..., |)$ \
|
||||
(Evt. zu ONB ergenze mit Gram-Schmit/Kreuzprodukt)
|
||||
|
||||
6. $S in RR^(n times m)$ (wie $A$):
|
||||
|
||||
5. $S in RR^(n times m)$ (wie $A$): \
|
||||
$S = mat(sigma_0, 0; 0, sigma_1; dots.v, dots.v; 0, 0) quad quad quad S = mat(sigma_0, 0, dots, 0; 0, sigma_1, ..., 0)$
|
||||
]
|
||||
|
||||
|
||||
@@ -1226,7 +1226,7 @@
|
||||
[],
|
||||
[
|
||||
$Phi(t) = L dot i(t)$\
|
||||
$u(t) = C dot (d i)/(d t)$\
|
||||
$u(t) = L dot (d i)/(d t)$\
|
||||
$[L] = H = unit("V s") / unit("A")$
|
||||
],
|
||||
[
|
||||
@@ -1260,11 +1260,6 @@
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complex Zahlen]
|
||||
|
||||
]
|
||||
|
||||
// Complex AC
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung]
|
||||
@@ -1293,6 +1288,30 @@
|
||||
$
|
||||
]
|
||||
|
||||
// AC Components
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[Komplexe Komponent]
|
||||
#table(
|
||||
columns: (1fr, 2fr, 2fr, 2fr),
|
||||
fill: (x, y) => if calc.rem(y, 2) == 1 { tableFillLow } else { tableFillHigh },
|
||||
[], [*$Y = U/I$*], [*$Z = I/U$*], [*$phi$*],
|
||||
[], [*$Omega$*], [*$S$*], [*rad*],
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
resistor("R", (0, 0), (0.6, 0), width: 3mm, height: 2mm, fill: none)
|
||||
}), $R$, $1/G = R$, $0$,
|
||||
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
capacitor("R", (0, 0), (0.6, 0), width: 4mm, height: 6mm, fill: none)
|
||||
}), $1/(j w C)$, $j w C$, $-pi/2$,
|
||||
zap.circuit({
|
||||
import zap : *
|
||||
inductor("R", (0, 0), (0.6, 0), width: 4mm, height: 2mm, fill: none, variant: "ieee")
|
||||
}), $j w L$, $1/(j w L)$, $pi/2$
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorComplexAC)[
|
||||
#subHeading(fill: colorComplexAC)[*Levi's Lustig Leistung*]
|
||||
|
||||
@@ -1301,15 +1320,17 @@
|
||||
#table(
|
||||
columns: (auto, 1fr, auto),
|
||||
fill: (x, y) => if calc.rem(y, 2) == 0 { tableFillLow } else { tableFillHigh },
|
||||
[Scheinleitsung], [$(P_s =) space abs(underline(S))$], [$["VA"]$],
|
||||
[Wirkleistung], [$(P_w =) space P = "Re"{} $], [$["W"]$],
|
||||
[Blindleistung], [$(P_b =) space Q = "Im"{}$], [$["var"]$]
|
||||
[Scheinleitsung], [$S = abs(P)$], [$["VA"]$],
|
||||
[Wirkleistung], [$P_w = "Re"{P} $], [$["W"]$],
|
||||
[Blindleistung], [$P_b = "Im"{P}$], [$["var"]$]
|
||||
)
|
||||
|
||||
Bei Wiederstand: $R$
|
||||
|
||||
$P_w = U_m^2 / 2R = (I_m^2 R)/2$
|
||||
|
||||
$P = 1/2 U I^* = 1/2 abs(U)^2 Y^* = 1/2 abs(I)^2 Z^*$
|
||||
|
||||
$U_"eff" = U_m/sqrt(2), I_"eff" = I_m / sqrt(2)$
|
||||
]
|
||||
|
||||
@@ -1331,192 +1352,303 @@
|
||||
|
||||
#pagebreak()
|
||||
|
||||
#bgBlock(fill: colorZweiTore, width: 100%)[
|
||||
#subHeading(fill: colorZweiTore)[Zwei-Tor-Übersichts]
|
||||
|
||||
#table(
|
||||
fill: (x, y) => if calc.rem(y, 2) == 0 { tableFillHigh } else { tableFillLow },
|
||||
columns: (auto, auto, auto, 1fr, 1fr, 1fr),
|
||||
[*Name*],
|
||||
[*Schaltbild*],
|
||||
[*Ersatz-Schaltbild*],
|
||||
[*Eigenschaften*],
|
||||
[*Beschreibung*],
|
||||
[*Knotenspannungs Analyse*],
|
||||
|
||||
[Nullor],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[$A = mat(0, 0; 0, 0)$],
|
||||
[],
|
||||
|
||||
[OpAmp \ lin],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
|
||||
[OpAmp \ $U_"sat+"$],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
|
||||
[OpAmp \ $U_"sat-"$],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
|
||||
[VCVS],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[$H' = mat(0, 0; mu, 0) quad A = mat(1/mu 0; 0, 0)$],
|
||||
[],
|
||||
|
||||
[VCCS],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[$G = mat(0, 0; g, 0) quad A = mat(0, -1/g; 0, 0)$],
|
||||
[],
|
||||
|
||||
[CCVS],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[$R = mat(0, 0, r, 0) quad A = mat(0, 0; 1/r, 0)$],
|
||||
[],
|
||||
|
||||
[CCCS],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[$H = mat(0, 0; beta, 0) quad A = mat(0, 0; 0, -1/beta)$],
|
||||
[],
|
||||
|
||||
[Übertrager],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
|
||||
[Gyrator],
|
||||
[],
|
||||
[],
|
||||
[
|
||||
- Antireziprok, Antisymetrisch
|
||||
- Auch Positiv-Immitanz-Inverter
|
||||
],
|
||||
[$R = mat(0, -R_d; R_d, 0) quad G = mat(0, G_d; -G_d, 0) \ A = mat(0, R_d; 1/R_d, 0) quad A' = mat(0, -R_d; -1/R_d, 0)$],
|
||||
[],
|
||||
|
||||
[NIK],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[
|
||||
- Akitv
|
||||
- Antireziprok
|
||||
- Symetrisch für $abs(k) = 1$
|
||||
],
|
||||
[$H = mat(0, -k; -k, 0) quad H' = mat(0, -1/k; -1/k, 0); A = mat(-k, 0; 0, 1/k) quad A'= mat(-1/k, 0; 0, k)$],
|
||||
|
||||
[T-Glied],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[
|
||||
|
||||
],
|
||||
[],
|
||||
|
||||
[$pi$-Glied],
|
||||
[],
|
||||
[],
|
||||
[
|
||||
|
||||
]
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
// Tor Eigenschaften
|
||||
#place(
|
||||
bottom, float: true, scope: "parent",
|
||||
bgBlock(fill: colorEigenschaften, width: 100%)[
|
||||
#subHeading(fill: colorEigenschaften)[Tor Eigenschaften]
|
||||
#bgBlock(fill: colorEigenschaften, width: 100%)[
|
||||
#subHeading(fill: colorEigenschaften)[Tor Eigenschaften]
|
||||
|
||||
#table(
|
||||
columns: (auto, auto, auto, auto),
|
||||
inset: 2mm,
|
||||
align: horizon,
|
||||
fill: (x, y) => if calc.rem(y, 2) == 1 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Reaktive Elemente*]),
|
||||
[*passiv*\ (nimmt Energie auf)\ $not$aktiv],
|
||||
[$forall (u,i) in cal(F): u dot i >= 0$],
|
||||
[
|
||||
$jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\
|
||||
$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) >=0$
|
||||
],
|
||||
[],
|
||||
|
||||
[*verlustlos*],
|
||||
[
|
||||
$forall (u,i) in cal(F): u dot i = 0$\
|
||||
|
||||
Kennline nur $u\/i$-Achsen
|
||||
],
|
||||
[$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$],
|
||||
[
|
||||
$u\/q$-Plot: Wenn keine Schleifen \
|
||||
$i\/Phi$-Plot: Wenn keine Schleifen \
|
||||
$u\/i$-Plot: Wenn Auf Achse \
|
||||
$Phi\/q$-Plot: Wenn auf Achse \
|
||||
],
|
||||
|
||||
|
||||
[*linear*],
|
||||
[Kennline ist Gerade],
|
||||
[
|
||||
Darstellbar: Matrix $+$ Aufpunkt\
|
||||
$lambda_1 vec(jVec(u)_1, jVec(i)_1) + lambda_2 vec(jVec(u)_2, jVec(i)_2) in cal(F)$
|
||||
],
|
||||
[],
|
||||
|
||||
[*quellenfrei*],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
|
||||
[*streng linear*],
|
||||
[linear UND quellenfrei],
|
||||
[linear UND quellenfrei\ Darstellbar: Nur Matrix],
|
||||
[],
|
||||
|
||||
|
||||
[*ungepolt* \ (Punkt sym.)],
|
||||
[$(u,i) in cal(F) <=> (-u, -i) in cal(F)\
|
||||
g(u) = i, r(i) = u
|
||||
$],
|
||||
[
|
||||
N/A
|
||||
],
|
||||
[],
|
||||
|
||||
[*symetrisch*\ $<=>$ Umkehrbar],
|
||||
[N/A],
|
||||
[
|
||||
$jMat(A) = jMat(A')$\
|
||||
$jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0) \
|
||||
det(H) = 1, $
|
||||
|
||||
],
|
||||
[],
|
||||
|
||||
[*Reziprok*],
|
||||
[Immer Reziprok],
|
||||
[
|
||||
$cal(F)$ symetrisch $=> cal(F)$ reziprok
|
||||
|
||||
$jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \
|
||||
jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$],
|
||||
[],
|
||||
|
||||
[*$x$-gesteudert*], [Existiert $r(i) = u \/g(u) = i$], [Existiert die Matrix? siehe Tabelle],
|
||||
[],
|
||||
|
||||
[Alle Beschreibung],
|
||||
[Klar],
|
||||
[$det(M) != 0$, Alle Eintrag $!= 0$]
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#set text(size: 10pt)
|
||||
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#table(
|
||||
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
table.cell(
|
||||
inset: 0mm,
|
||||
[
|
||||
#cetz.canvas(length: 12mm,{
|
||||
import cetz.draw : *
|
||||
line((1,0), (0,1))
|
||||
content((0.309, 0.25), "Out")
|
||||
content((0.75, 0.75), "In")
|
||||
})
|
||||
]),
|
||||
$bold(R)$,
|
||||
$bold(G)$,
|
||||
$bold(H)$,
|
||||
$bold(H')$,
|
||||
$bold(A)$,
|
||||
$bold(A')$,
|
||||
|
||||
$bold(R)$,
|
||||
$mat(r_11, r_12; r_21, r_22)$,
|
||||
$jMat(G^(-1) =) 1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
||||
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
||||
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
||||
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
||||
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
||||
|
||||
$bold(G)$,
|
||||
$jMat(R^(-1) =) 1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
||||
$mat(g_11, g_12; g_21, g_22)$,
|
||||
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
||||
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
||||
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
|
||||
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
|
||||
|
||||
$bold(H)$,
|
||||
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
||||
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
||||
$mat(h_11, h_12; h_21, h_22)$,
|
||||
$jMat(H')^(-1)= 1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
||||
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
||||
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
||||
|
||||
$bold(H')$,
|
||||
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
||||
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
||||
$jMat(H^(-1))= 1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
||||
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
||||
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
||||
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
||||
|
||||
$bold(A)$,
|
||||
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
|
||||
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
|
||||
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
||||
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
||||
$mat(a_11, a_12; a_21, a_22)$,
|
||||
$jMat(A'^(-1))= 1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
||||
|
||||
$bold(A')$,
|
||||
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
||||
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
||||
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
||||
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
||||
$jMat(A^(-1))= 1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
||||
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
||||
)
|
||||
|
||||
#table(
|
||||
columns: (auto, auto, auto, auto),
|
||||
inset: 2mm,
|
||||
align: horizon,
|
||||
fill: (x, y) => if calc.rem(y, 2) == 1 { rgb("#c5c5c5") } else { white },
|
||||
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Reaktive Elemente*]),
|
||||
[*passiv*\ (nimmt Energie auf)\ $not$aktiv],
|
||||
[$forall (u,i) in cal(F): u dot i >= 0$],
|
||||
[
|
||||
$jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\
|
||||
$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) >=0$
|
||||
],
|
||||
[],
|
||||
$bold(R) jVec(i) = jVec(u)$,
|
||||
$bold(G) jVec(u) = jVec(i)$,
|
||||
$bold(H) vec(i_1, u_2) = vec(u_1, i_2)$,
|
||||
$bold(H') vec(u_1, i_2) = vec(i_1, u_2)$,
|
||||
$bold(A) vec(u_2, -i_2) = vec(i_1, u_1)$,
|
||||
$bold(A') vec(u_1, -i_1) = vec(i_2, u_2)$,
|
||||
|
||||
[*verlustlos*],
|
||||
[
|
||||
$forall (u,i) in cal(F): u dot i = 0$\
|
||||
|
||||
Kennline nur $u\/i$-Achsen
|
||||
],
|
||||
[$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$],
|
||||
[
|
||||
$u\/q$-Plot: Wenn keine Schleifen \
|
||||
$i\/Phi$-Plot: Wenn keine Schleifen \
|
||||
$u\/i$-Plot: Wenn Auf Achse \
|
||||
$Phi\/q$-Plot: Wenn auf Achse \
|
||||
],
|
||||
|
||||
|
||||
[*linear*],
|
||||
[Kennline ist Gerade],
|
||||
[
|
||||
Darstellbar: Matrix $+$ Aufpunkt\
|
||||
$lambda_1 vec(jVec(u)_1, jVec(i)_1) + lambda_2 vec(jVec(u)_2, jVec(i)_2) in cal(F)$
|
||||
],
|
||||
[],
|
||||
|
||||
[*quellenfrei*],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
||||
|
||||
[*streng linear*],
|
||||
[linear UND quellenfrei],
|
||||
[linear UND quellenfrei\ Darstellbar: Nur Matrix],
|
||||
[],
|
||||
|
||||
|
||||
[*ungepolt* \ (Punkt sym.)],
|
||||
[$(u,i) in cal(F) <=> (-u, -i) in cal(F)\
|
||||
g(u) = i, r(i) = u
|
||||
$],
|
||||
[
|
||||
N/A
|
||||
],
|
||||
[],
|
||||
|
||||
[*symetrisch*\ $<=>$ Umkehrbar],
|
||||
[N/A],
|
||||
[
|
||||
$jMat(A) = jMat(A')$\
|
||||
$jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0) \
|
||||
det(H) = 1, $
|
||||
|
||||
],
|
||||
[],
|
||||
|
||||
[*Reziprok*],
|
||||
[Immer Reziprok],
|
||||
[
|
||||
$cal(F)$ symetrisch $=> cal(F)$ reziprok
|
||||
|
||||
$jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \
|
||||
jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$],
|
||||
[],
|
||||
|
||||
[*$x$-gesteudert*], [Existiert $r(i) = u \/g(u) = i$], [Existiert die Matrix? siehe Tabelle],
|
||||
[],
|
||||
|
||||
[Alle Beschreibung],
|
||||
[Klar],
|
||||
[$det(M) != 0$, Alle Eintrag $!= 0$]
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#set text(size: 10pt)
|
||||
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#table(
|
||||
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
table.cell(
|
||||
inset: 0mm,
|
||||
[
|
||||
#cetz.canvas(length: 12mm,{
|
||||
import cetz.draw : *
|
||||
line((1,0), (0,1))
|
||||
content((0.309, 0.25), "Out")
|
||||
content((0.75, 0.75), "In")
|
||||
})
|
||||
]),
|
||||
$bold(R)$,
|
||||
$bold(G)$,
|
||||
$bold(H)$,
|
||||
$bold(H')$,
|
||||
$bold(A)$,
|
||||
$bold(A')$,
|
||||
|
||||
$bold(R)$,
|
||||
$mat(r_11, r_12; r_21, r_22)$,
|
||||
$jMat(G^(-1) =) 1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
||||
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
||||
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
||||
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
||||
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
||||
|
||||
$bold(G)$,
|
||||
$jMat(R^(-1) =) 1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
||||
$mat(g_11, g_12; g_21, g_22)$,
|
||||
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
||||
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
||||
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
|
||||
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
|
||||
|
||||
$bold(H)$,
|
||||
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
||||
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
||||
$mat(h_11, h_12; h_21, h_22)$,
|
||||
$jMat(H')^(-1)= 1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
||||
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
||||
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
||||
|
||||
$bold(H')$,
|
||||
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
||||
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
||||
$jMat(H^(-1))= 1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
||||
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
||||
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
||||
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
||||
|
||||
$bold(A)$,
|
||||
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
|
||||
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
|
||||
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
||||
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
||||
$mat(a_11, a_12; a_21, a_22)$,
|
||||
$jMat(A'^(-1))= 1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
||||
|
||||
$bold(A')$,
|
||||
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
||||
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
||||
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
||||
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
||||
$jMat(A^(-1))= 1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
||||
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
||||
)
|
||||
|
||||
#table(
|
||||
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
inset: (bottom: 4mm, top: 4mm),
|
||||
gutter: 0.1mm,
|
||||
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
||||
|
||||
[],
|
||||
$bold(R) jVec(i) = jVec(u)$,
|
||||
$bold(G) jVec(u) = jVec(i)$,
|
||||
$bold(H) vec(i_1, u_2) = vec(u_1, i_2)$,
|
||||
$bold(H') vec(u_1, i_2) = vec(i_1, u_2)$,
|
||||
$bold(A) vec(u_2, -i_2) = vec(i_1, u_1)$,
|
||||
$bold(A') vec(u_1, -i_1) = vec(i_2, u_2)$,
|
||||
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm))
|
||||
#let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm, left: 2mm, right: 2mm,))
|
||||
|
||||
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
|
||||
#let MathAlignLeft(e) = {
|
||||
@@ -6,7 +6,7 @@
|
||||
}
|
||||
|
||||
#let subHeading(body, fill: color) = {
|
||||
box(
|
||||
move(dx: -2mm, dy: 0mm, box(
|
||||
align(
|
||||
top+center,
|
||||
text(
|
||||
@@ -17,10 +17,10 @@
|
||||
)
|
||||
),
|
||||
fill: fill,
|
||||
width: 100%,
|
||||
width: 100% + 4mm,
|
||||
inset: 1mm,
|
||||
height: auto
|
||||
)
|
||||
))
|
||||
}
|
||||
|
||||
#let MathAlignLeft(e) = {
|
||||
@@ -58,14 +58,16 @@
|
||||
#let ComplexNumbersSection(i: $i$) = [
|
||||
$1/#i = #i^(-1) = -#i quad quad #i^2=-1 quad quad sqrt(#i) = 1/sqrt(2) + 1/sqrt(2)#i$
|
||||
|
||||
$z in CC = a + b #i quad quad quad z = r dot e^(phi #i)$ \
|
||||
$z in CC = a + b #i quad quad quad z = r dot e^(#i phi)$ \
|
||||
$z_0 + z_1 = (a_0 + a_1) + (b_0 + b_1) #i$\
|
||||
$z_0 dot z_1 = (a_1 a_2 - b_1 b_2) + #i (a_1b_2 + a_2 b_1) = r_0 r_1 e^(#i (phi_0 + phi_1))$\
|
||||
$z^x = r^x dot e^(phi #i dot x) quad x in RR$ \
|
||||
$z_0/z_1 = r_0/r_1 e^(#i (phi_0 - phi_1)) quad quad quad$
|
||||
|
||||
$z^* = a - #i b = r e^(-#i phi)$
|
||||
|
||||
$r = abs(z) quad phi = cases(
|
||||
+ arccos(a/r) space : space b >= 0,
|
||||
- arccos(a/r) space : space b < 0,
|
||||
+ arccos(a/r) space : space a >= 0,
|
||||
- arccos(a/r) space : space a < 0,
|
||||
)$
|
||||
]
|
||||
Reference in New Issue
Block a user