|
|
|
|
@@ -1260,11 +1260,6 @@
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorAllgemein)[
|
|
|
|
|
#subHeading(fill: colorAllgemein)[Complex Zahlen]
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
// Complex AC
|
|
|
|
|
#bgBlock(fill: colorComplexAC)[
|
|
|
|
|
#subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung]
|
|
|
|
|
@@ -1310,6 +1305,8 @@
|
|
|
|
|
|
|
|
|
|
$P_w = U_m^2 / 2R = (I_m^2 R)/2$
|
|
|
|
|
|
|
|
|
|
$P = 1/2 U I^* = 1/2 abs(U)^2 Y^* = 1/2 abs(I)^2 Z^*$
|
|
|
|
|
|
|
|
|
|
$U_"eff" = U_m/sqrt(2), I_"eff" = I_m / sqrt(2)$
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
@@ -1331,192 +1328,303 @@
|
|
|
|
|
|
|
|
|
|
#pagebreak()
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorZweiTore, width: 100%)[
|
|
|
|
|
#subHeading(fill: colorZweiTore)[Zwei-Tor-Übersichts]
|
|
|
|
|
|
|
|
|
|
#table(
|
|
|
|
|
fill: (x, y) => if calc.rem(y, 2) == 0 { tableFillHigh } else { tableFillLow },
|
|
|
|
|
columns: (auto, auto, auto, 1fr, 1fr, 1fr),
|
|
|
|
|
[*Name*],
|
|
|
|
|
[*Schaltbild*],
|
|
|
|
|
[*Ersatz-Schaltbild*],
|
|
|
|
|
[*Eigenschaften*],
|
|
|
|
|
[*Beschreibung*],
|
|
|
|
|
[*Knotenspannungs Analyse*],
|
|
|
|
|
|
|
|
|
|
[Nullor],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[$A = mat(0, 0; 0, 0)$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[OpAmp \ lin],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[OpAmp \ $U_"sat+"$],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[OpAmp \ $U_"sat-"$],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[VCVS],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[$H' = mat(0, 0; mu, 0) quad A = mat(1/mu 0; 0, 0)$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[VCCS],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[$G = mat(0, 0; g, 0) quad A = mat(0, -1/g; 0, 0)$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[CCVS],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[$R = mat(0, 0, r, 0) quad A = mat(0, 0; 1/r, 0)$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[CCCS],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[$H = mat(0, 0; beta, 0) quad A = mat(0, 0; 0, -1/beta)$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[Übertrager],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[Gyrator],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[
|
|
|
|
|
- Antireziprok, Antisymetrisch
|
|
|
|
|
- Auch Positiv-Immitanz-Inverter
|
|
|
|
|
],
|
|
|
|
|
[$R = mat(0, -R_d; R_d, 0) quad G = mat(0, G_d; -G_d, 0) \ A = mat(0, R_d; 1/R_d, 0) quad A' = mat(0, -R_d; -1/R_d, 0)$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[NIK],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[
|
|
|
|
|
- Akitv
|
|
|
|
|
- Antireziprok
|
|
|
|
|
- Symetrisch für $abs(k) = 1$
|
|
|
|
|
],
|
|
|
|
|
[$H = mat(0, -k; -k, 0) quad H' = mat(0, -1/k; -1/k, 0); A = mat(-k, 0; 0, 1/k) quad A'= mat(-1/k, 0; 0, k)$],
|
|
|
|
|
|
|
|
|
|
[T-Glied],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[$pi$-Glied],
|
|
|
|
|
[],
|
|
|
|
|
[],
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Tor Eigenschaften
|
|
|
|
|
#place(
|
|
|
|
|
bottom, float: true, scope: "parent",
|
|
|
|
|
bgBlock(fill: colorEigenschaften, width: 100%)[
|
|
|
|
|
#subHeading(fill: colorEigenschaften)[Tor Eigenschaften]
|
|
|
|
|
#bgBlock(fill: colorEigenschaften, width: 100%)[
|
|
|
|
|
#subHeading(fill: colorEigenschaften)[Tor Eigenschaften]
|
|
|
|
|
|
|
|
|
|
#table(
|
|
|
|
|
columns: (auto, auto, auto, auto),
|
|
|
|
|
inset: 2mm,
|
|
|
|
|
align: horizon,
|
|
|
|
|
fill: (x, y) => if calc.rem(y, 2) == 1 { rgb("#c5c5c5") } else { white },
|
|
|
|
|
|
|
|
|
|
table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Reaktive Elemente*]),
|
|
|
|
|
[*passiv*\ (nimmt Energie auf)\ $not$aktiv],
|
|
|
|
|
[$forall (u,i) in cal(F): u dot i >= 0$],
|
|
|
|
|
[
|
|
|
|
|
$jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\
|
|
|
|
|
$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) >=0$
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*verlustlos*],
|
|
|
|
|
[
|
|
|
|
|
$forall (u,i) in cal(F): u dot i = 0$\
|
|
|
|
|
|
|
|
|
|
Kennline nur $u\/i$-Achsen
|
|
|
|
|
],
|
|
|
|
|
[$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$],
|
|
|
|
|
[
|
|
|
|
|
$u\/q$-Plot: Wenn keine Schleifen \
|
|
|
|
|
$i\/Phi$-Plot: Wenn keine Schleifen \
|
|
|
|
|
$u\/i$-Plot: Wenn Auf Achse \
|
|
|
|
|
$Phi\/q$-Plot: Wenn auf Achse \
|
|
|
|
|
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[*linear*],
|
|
|
|
|
[Kennline ist Gerade],
|
|
|
|
|
[
|
|
|
|
|
Darstellbar: Matrix $+$ Aufpunkt\
|
|
|
|
|
$lambda_1 vec(jVec(u)_1, jVec(i)_1) + lambda_2 vec(jVec(u)_2, jVec(i)_2) in cal(F)$
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*quellenfrei*],
|
|
|
|
|
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
|
|
|
|
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
|
|
|
|
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
|
|
|
|
|
|
|
|
|
[*streng linear*],
|
|
|
|
|
[linear UND quellenfrei],
|
|
|
|
|
[linear UND quellenfrei\ Darstellbar: Nur Matrix],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[*ungepolt* \ (Punkt sym.)],
|
|
|
|
|
[$(u,i) in cal(F) <=> (-u, -i) in cal(F)\
|
|
|
|
|
g(u) = i, r(i) = u
|
|
|
|
|
$],
|
|
|
|
|
[
|
|
|
|
|
N/A
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*symetrisch*\ $<=>$ Umkehrbar],
|
|
|
|
|
[N/A],
|
|
|
|
|
[
|
|
|
|
|
$jMat(A) = jMat(A')$\
|
|
|
|
|
$jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0) \
|
|
|
|
|
det(H) = 1, $
|
|
|
|
|
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*Reziprok*],
|
|
|
|
|
[Immer Reziprok],
|
|
|
|
|
[
|
|
|
|
|
$cal(F)$ symetrisch $=> cal(F)$ reziprok
|
|
|
|
|
|
|
|
|
|
$jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \
|
|
|
|
|
jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*$x$-gesteudert*], [Existiert $r(i) = u \/g(u) = i$], [Existiert die Matrix? siehe Tabelle],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[Alle Beschreibung],
|
|
|
|
|
[Klar],
|
|
|
|
|
[$det(M) != 0$, Alle Eintrag $!= 0$]
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
#bgBlock(fill: colorZweiTore)[
|
|
|
|
|
#set text(size: 10pt)
|
|
|
|
|
|
|
|
|
|
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
|
|
|
|
#table(
|
|
|
|
|
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
|
|
|
|
align: center,
|
|
|
|
|
inset: (bottom: 4mm, top: 4mm),
|
|
|
|
|
gutter: 0.1mm,
|
|
|
|
|
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
|
|
|
|
|
|
|
|
|
table.cell(
|
|
|
|
|
inset: 0mm,
|
|
|
|
|
[
|
|
|
|
|
#cetz.canvas(length: 12mm,{
|
|
|
|
|
import cetz.draw : *
|
|
|
|
|
line((1,0), (0,1))
|
|
|
|
|
content((0.309, 0.25), "Out")
|
|
|
|
|
content((0.75, 0.75), "In")
|
|
|
|
|
})
|
|
|
|
|
]),
|
|
|
|
|
$bold(R)$,
|
|
|
|
|
$bold(G)$,
|
|
|
|
|
$bold(H)$,
|
|
|
|
|
$bold(H')$,
|
|
|
|
|
$bold(A)$,
|
|
|
|
|
$bold(A')$,
|
|
|
|
|
|
|
|
|
|
$bold(R)$,
|
|
|
|
|
$mat(r_11, r_12; r_21, r_22)$,
|
|
|
|
|
$jMat(G^(-1) =) 1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
|
|
|
|
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
|
|
|
|
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
|
|
|
|
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
|
|
|
|
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
|
|
|
|
|
|
|
|
|
$bold(G)$,
|
|
|
|
|
$jMat(R^(-1) =) 1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
|
|
|
|
$mat(g_11, g_12; g_21, g_22)$,
|
|
|
|
|
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
|
|
|
|
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
|
|
|
|
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
|
|
|
|
|
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
|
|
|
|
|
|
|
|
|
|
$bold(H)$,
|
|
|
|
|
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
|
|
|
|
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
|
|
|
|
$mat(h_11, h_12; h_21, h_22)$,
|
|
|
|
|
$jMat(H')^(-1)= 1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
|
|
|
|
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
|
|
|
|
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
|
|
|
|
|
|
|
|
|
$bold(H')$,
|
|
|
|
|
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
|
|
|
|
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
|
|
|
|
$jMat(H^(-1))= 1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
|
|
|
|
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
|
|
|
|
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
|
|
|
|
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
|
|
|
|
|
|
|
|
|
$bold(A)$,
|
|
|
|
|
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
|
|
|
|
|
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
|
|
|
|
|
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
|
|
|
|
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
|
|
|
|
$mat(a_11, a_12; a_21, a_22)$,
|
|
|
|
|
$jMat(A'^(-1))= 1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
|
|
|
|
|
|
|
|
|
$bold(A')$,
|
|
|
|
|
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
|
|
|
|
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
|
|
|
|
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
|
|
|
|
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
|
|
|
|
$jMat(A^(-1))= 1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
|
|
|
|
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
#table(
|
|
|
|
|
columns: (auto, auto, auto, auto),
|
|
|
|
|
inset: 2mm,
|
|
|
|
|
align: horizon,
|
|
|
|
|
fill: (x, y) => if calc.rem(y, 2) == 1 { rgb("#c5c5c5") } else { white },
|
|
|
|
|
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
|
|
|
|
align: center,
|
|
|
|
|
inset: (bottom: 4mm, top: 4mm),
|
|
|
|
|
gutter: 0.1mm,
|
|
|
|
|
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
|
|
|
|
|
|
|
|
|
table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Reaktive Elemente*]),
|
|
|
|
|
[*passiv*\ (nimmt Energie auf)\ $not$aktiv],
|
|
|
|
|
[$forall (u,i) in cal(F): u dot i >= 0$],
|
|
|
|
|
[
|
|
|
|
|
$jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\
|
|
|
|
|
$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) >=0$
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*verlustlos*],
|
|
|
|
|
[
|
|
|
|
|
$forall (u,i) in cal(F): u dot i = 0$\
|
|
|
|
|
|
|
|
|
|
Kennline nur $u\/i$-Achsen
|
|
|
|
|
],
|
|
|
|
|
[$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$],
|
|
|
|
|
[
|
|
|
|
|
$u\/q$-Plot: Wenn keine Schleifen \
|
|
|
|
|
$i\/Phi$-Plot: Wenn keine Schleifen \
|
|
|
|
|
$u\/i$-Plot: Wenn Auf Achse \
|
|
|
|
|
$Phi\/q$-Plot: Wenn auf Achse \
|
|
|
|
|
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[*linear*],
|
|
|
|
|
[Kennline ist Gerade],
|
|
|
|
|
[
|
|
|
|
|
Darstellbar: Matrix $+$ Aufpunkt\
|
|
|
|
|
$lambda_1 vec(jVec(u)_1, jVec(i)_1) + lambda_2 vec(jVec(u)_2, jVec(i)_2) in cal(F)$
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*quellenfrei*],
|
|
|
|
|
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
|
|
|
|
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
|
|
|
|
[$(qty("0", "A"), qty("0", "V")) in cal(F)$],
|
|
|
|
|
|
|
|
|
|
[*streng linear*],
|
|
|
|
|
[linear UND quellenfrei],
|
|
|
|
|
[linear UND quellenfrei\ Darstellbar: Nur Matrix],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[*ungepolt* \ (Punkt sym.)],
|
|
|
|
|
[$(u,i) in cal(F) <=> (-u, -i) in cal(F)\
|
|
|
|
|
g(u) = i, r(i) = u
|
|
|
|
|
$],
|
|
|
|
|
[
|
|
|
|
|
N/A
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*symetrisch*\ $<=>$ Umkehrbar],
|
|
|
|
|
[N/A],
|
|
|
|
|
[
|
|
|
|
|
$jMat(A) = jMat(A')$\
|
|
|
|
|
$jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0) \
|
|
|
|
|
det(H) = 1, $
|
|
|
|
|
|
|
|
|
|
],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*Reziprok*],
|
|
|
|
|
[Immer Reziprok],
|
|
|
|
|
[
|
|
|
|
|
$cal(F)$ symetrisch $=> cal(F)$ reziprok
|
|
|
|
|
|
|
|
|
|
$jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \
|
|
|
|
|
jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[*$x$-gesteudert*], [Existiert $r(i) = u \/g(u) = i$], [Existiert die Matrix? siehe Tabelle],
|
|
|
|
|
[],
|
|
|
|
|
|
|
|
|
|
[Alle Beschreibung],
|
|
|
|
|
[Klar],
|
|
|
|
|
[$det(M) != 0$, Alle Eintrag $!= 0$]
|
|
|
|
|
$bold(R) jVec(i) = jVec(u)$,
|
|
|
|
|
$bold(G) jVec(u) = jVec(i)$,
|
|
|
|
|
$bold(H) vec(i_1, u_2) = vec(u_1, i_2)$,
|
|
|
|
|
$bold(H') vec(u_1, i_2) = vec(i_1, u_2)$,
|
|
|
|
|
$bold(A) vec(u_2, -i_2) = vec(i_1, u_1)$,
|
|
|
|
|
$bold(A') vec(u_1, -i_1) = vec(i_2, u_2)$,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
#place(bottom+left, scope: "parent", float: true)[
|
|
|
|
|
#bgBlock(fill: colorZweiTore)[
|
|
|
|
|
#set text(size: 10pt)
|
|
|
|
|
|
|
|
|
|
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
|
|
|
|
#table(
|
|
|
|
|
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
|
|
|
|
align: center,
|
|
|
|
|
inset: (bottom: 4mm, top: 4mm),
|
|
|
|
|
gutter: 0.1mm,
|
|
|
|
|
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
|
|
|
|
|
|
|
|
|
table.cell(
|
|
|
|
|
inset: 0mm,
|
|
|
|
|
[
|
|
|
|
|
#cetz.canvas(length: 12mm,{
|
|
|
|
|
import cetz.draw : *
|
|
|
|
|
line((1,0), (0,1))
|
|
|
|
|
content((0.309, 0.25), "Out")
|
|
|
|
|
content((0.75, 0.75), "In")
|
|
|
|
|
})
|
|
|
|
|
]),
|
|
|
|
|
$bold(R)$,
|
|
|
|
|
$bold(G)$,
|
|
|
|
|
$bold(H)$,
|
|
|
|
|
$bold(H')$,
|
|
|
|
|
$bold(A)$,
|
|
|
|
|
$bold(A')$,
|
|
|
|
|
|
|
|
|
|
$bold(R)$,
|
|
|
|
|
$mat(r_11, r_12; r_21, r_22)$,
|
|
|
|
|
$jMat(G^(-1) =) 1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
|
|
|
|
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
|
|
|
|
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
|
|
|
|
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
|
|
|
|
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
|
|
|
|
|
|
|
|
|
$bold(G)$,
|
|
|
|
|
$jMat(R^(-1) =) 1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
|
|
|
|
$mat(g_11, g_12; g_21, g_22)$,
|
|
|
|
|
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
|
|
|
|
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
|
|
|
|
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
|
|
|
|
|
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
|
|
|
|
|
|
|
|
|
|
$bold(H)$,
|
|
|
|
|
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
|
|
|
|
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
|
|
|
|
$mat(h_11, h_12; h_21, h_22)$,
|
|
|
|
|
$jMat(H')^(-1)= 1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
|
|
|
|
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
|
|
|
|
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
|
|
|
|
|
|
|
|
|
$bold(H')$,
|
|
|
|
|
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
|
|
|
|
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
|
|
|
|
$jMat(H^(-1))= 1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
|
|
|
|
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
|
|
|
|
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
|
|
|
|
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
|
|
|
|
|
|
|
|
|
$bold(A)$,
|
|
|
|
|
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
|
|
|
|
|
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
|
|
|
|
|
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
|
|
|
|
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
|
|
|
|
$mat(a_11, a_12; a_21, a_22)$,
|
|
|
|
|
$jMat(A'^(-1))= 1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
|
|
|
|
|
|
|
|
|
$bold(A')$,
|
|
|
|
|
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
|
|
|
|
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
|
|
|
|
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
|
|
|
|
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
|
|
|
|
$jMat(A^(-1))= 1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
|
|
|
|
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
#table(
|
|
|
|
|
columns: (12mm, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
|
|
|
|
align: center,
|
|
|
|
|
inset: (bottom: 4mm, top: 4mm),
|
|
|
|
|
gutter: 0.1mm,
|
|
|
|
|
fill: (x, y) => if x != 0 and calc.rem(x, 2) == 0 { rgb("#c5c5c5") } else { white },
|
|
|
|
|
|
|
|
|
|
[],
|
|
|
|
|
$bold(R) jVec(i) = jVec(u)$,
|
|
|
|
|
$bold(G) jVec(u) = jVec(i)$,
|
|
|
|
|
$bold(H) vec(i_1, u_2) = vec(u_1, i_2)$,
|
|
|
|
|
$bold(H') vec(u_1, i_2) = vec(i_1, u_2)$,
|
|
|
|
|
$bold(A) vec(u_2, -i_2) = vec(i_1, u_1)$,
|
|
|
|
|
$bold(A') vec(u_1, -i_1) = vec(i_2, u_2)$,
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
]
|
|
|
|
|
]
|
|
|
|
|
|