Compare commits

...

2 Commits

Author SHA1 Message Date
alexander
636eeb2b9a updated schaltungstheorie
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 16s
2026-01-30 11:21:02 +01:00
alexander
3f9811c454 started adding verlustleistung to schaltungstheorie 2026-01-30 09:44:14 +01:00
2 changed files with 125 additions and 30 deletions

View File

@@ -302,4 +302,35 @@
#bgBlock(fill: colorState)[ #bgBlock(fill: colorState)[
#subHeading(fill: colorState)[Zustandsautomaten] #subHeading(fill: colorState)[Zustandsautomaten]
] ]
#colbreak()
#bgBlock(fill: colorRealsierung)[
#subHeading(fill: colorRealsierung)[Verlustleistung/Verzögerung]
$t_p ~ C_L / (V_"DD" - V_"Tn")$
$P_"stat" ~ e^(-V_T)$
$P_"dyn"~ V_"DD"^2$
*Dynamisch:* Bei Schlaten \
- Quer/Kurzschluss Strom $i_q$ \
$P_"short" = a_01 f beta_n tau (V_"DD" - 2 V_"Tn")^3$ \
$tau$: Kurzschluss/Schaltzeit
- Lade Strome des $C_L$ $i_c$
$P_"cap" = alpha_01 f C_L V_"DD"^2$
*Statisch:* Konstant
- Leckstom (weil Diode)
- Gatestrom
*Schaltrate*
$alpha_"clk" = 100%$
$alpha_"logic" = 50%$
]
] ]

View File

@@ -98,6 +98,17 @@
mark((angle: 0deg, radius: 4mm), 270deg, symbol: "straight", stroke: blue, scale: 0.75) mark((angle: 0deg, radius: 4mm), 270deg, symbol: "straight", stroke: blue, scale: 0.75)
}) })
]) ])
$u dot i > 0$: Nimmt Energie auf\
$u dot i = 0$: Verlustlos\
$u dot i < 0$: Gibt Energie ab\
]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Verschaltung]
] ]
// Quell Wandlung // Quell Wandlung
@@ -619,13 +630,14 @@
// Reaktive Elemeten // Reaktive Elemeten
#colbreak()
#bgBlock(fill: colorComplexAC)[ #bgBlock(fill: colorComplexAC)[
#subHeading(fill: colorComplexAC)[Reaktive Element] #subHeading(fill: colorComplexAC)[Reaktive Element]
*$forall$ Bauelemente*\ *Zustandsgrößen*\
#grid(columns: (1fr, 0pt, 1fr), #grid(columns: (1fr, 0pt, 1fr),
row-gutter: 3mm, row-gutter: 10mm,
column-gutter: 2mm, column-gutter: 2mm,
[ [
$[i(t)] = unit("A")$\ $[i(t)] = unit("A")$\
@@ -641,33 +653,39 @@
[ [
$q(t) = integral_(-infinity)^(t) i(tau) d tau = \ $q(t) = integral_(-infinity)^(t) i(tau) d tau = \
q(t_0) + integral_(0)^(t) i(tau) d tau q(0) + integral_(0)^(t) i(tau) d tau
$ \ $ \
$i(t) = dot(q(t))$ $i(t) = (d q)/(d t) = dot(q(t))$
], ],
[], [],
[ [
$Phi(t) = integral_(-infinity)^(t) u(tau) d tau = \ $Phi(t) = integral_(-infinity)^(t) u(tau) d tau = \
Phi(t_0) + integral_(0)^(t) u(tau) d tau Phi(0) + integral_(0)^(t) u(tau) d tau
$ \ $ \
$u(t) = dot(Phi(t))$ $u(t) = (d Phi)/(d t) dot(Phi(t))$
]) ])
$W(t_1, t_2) = integral_(t_1)^(t_2) P(tau) d tau = integral_(t_1)^(t_2) u(tau) i(tau) d tau$
$W(t_1, t_2) > 0$: Nimmt Energie auf\
$W(t_1, t_2) = 0$: Verlustlos\
$W(t_1, t_2) < 0$: Gibt Energie ab\
] ]
#bgBlock(fill: colorComplexAC)[ #bgBlock(fill: colorComplexAC)[
#subHeading(fill: colorComplexAC)[Reaktive Bauelemente] #subHeading(fill: colorComplexAC)[Reaktive Bauelemente]
#grid(columns: (1fr, 0pt, 1fr), #grid(columns: (1fr, 0pt, 1fr),
row-gutter: 3mm, row-gutter: 4mm,
column-gutter: 2mm, column-gutter: 2mm,
[ [
*Induktiv* *Kapazitiv*
], ],
grid.vline(stroke: 0.75pt), grid.vline(stroke: 0.75pt),
[], [],
[ [
*Kapazitiv* *Induktivität*
], ],
[ [
$q = c(u) \ chi(q) = u$\ $q = c(u) \ chi(q) = u$\
@@ -676,17 +694,48 @@
[ [
$Phi = l(i) \ i = lambda(Phi)$ $Phi = l(i) \ i = lambda(Phi)$
], ],
grid.cell(colspan: 3, inset: 2mm)[#align(center, [*Lineare Bauelemente*])],
[$u,q$ stetig und beschränkt],
[],
[$i,Phi$ stetig und beschränkt],
[]
)
#align(center, [*Lineare Bauelemente*])
#grid(columns: (1fr, 0pt, 1fr),
row-gutter: 4mm,
column-gutter: 2mm,
[
*Kapazitiv*
],
grid.vline(stroke: 0.75pt),
[],
[
*Induktivität*
],
[ [
$q(t) = C dot u(t)$\ $q(t) = C dot u(t)$\
$[C] = F = unit("C / V")$ $i(t) = C dot (d u)/(d t)$\
$[C] = F = unit("A s")/unit("V")$
], ],
[], [],
[ [
$Phi(t) = L dot i(t)$\ $Phi(t) = L dot i(t)$\
$[L] = H = unit("Wb / A")$ $u(t) = C dot (d i)/(d t)$\
$[L] = H = unit("V s") / unit("A")$
],
[
$E_C = q^2 / 2C = C/2 u^2$
],
[],
[
$E_L = Phi^2/2L = (L i^2)/2$
],
[
$C$: Admetanze $hat(=) G$
], [],
[
$L$: Impedanz $hat(=) R$
] ]
) )
] ]
@@ -735,6 +784,12 @@
** **
] ]
// SinTable
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable
])
] ]
#pagebreak() #pagebreak()
@@ -750,7 +805,7 @@
inset: 2mm, inset: 2mm,
align: horizon, align: horizon,
table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Complex AC*]), table.header([], [*Ein-Tor*], [*Zwei-Tor*], [*Complex AC*]),
[*passiv*\ ($not$aktiv)], [*passiv*\ (nimmt Energie auf)\ $not$aktiv],
[$forall (u,i) in cal(F): u dot i >= 0$], [$forall (u,i) in cal(F): u dot i >= 0$],
[ [
$jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\ $jMat(U)^T jMat(I) + jMat(I)^T jMat(U)$\
@@ -759,9 +814,18 @@
[], [],
[*verlustlos*], [*verlustlos*],
[$forall (u,i) in cal(F): u dot i = 0$], [
$forall (u,i) in cal(F): u dot i = 0$\
Kennline nur $u\/i$-Achsen
],
[$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$], [$forall vec(jVec(u),jVec(v)) in cal(F) : jVec(u)^T jVec(i) = 0$],
[], [
$u\/q$-Plot: Wenn keine Schleifen \
$i\/Phi$-Plot: Wenn keine Schleifen \
$u\/i$-Plot: Wenn Auf Achse \
$Phi\/q$-Plot: Wenn auf Achse \
],
[*linear*], [*linear*],
@@ -784,7 +848,9 @@
[*ungepolt* \ (Punkt sym.)], [*ungepolt* \ (Punkt sym.)],
[$(u,i) in cal(F) <=> (-u, -i) in cal(F)$], [$(u,i) in cal(F) <=> (-u, -i) in cal(F)\
g(u) = i, r(i) = u
$],
[ [
N/A N/A
], ],
@@ -794,7 +860,9 @@
[N/A], [N/A],
[ [
$jMat(A) = jMat(A')$\ $jMat(A) = jMat(A')$\
$jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0)$ $jMat(G) = jMat(P) jMat(G) jMat(P), space jMat(R) = jMat(P) jMat(R) jMat(P), quad jMat(P) = mat(0, 1; 1, 0) \
det(H) = 1, $
], ],
[], [],
@@ -806,6 +874,13 @@
$jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \ $jMat(U)^T jMat(I) - jMat(I)^T jMat(U) = 0 \
jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$], jMat(R)^T = jMat(R), quad jMat(G)^T = jMat(G) quad h_21 = -h_12 \ det(jMat(A)) = 1 quad det(jMat(A')) = 1 quad h'_21 = -h'_12$],
[], [],
[*$x$-gesteudert*], [Existiert $r(i) = u \/g(u) = i$], [Existiert die Matrix? siehe Tabelle],
[],
[Alle Beschreibung],
[Klar],
[$det(M) != 0$, Alle Eintrag $!= 0$]
) )
] ]
) )
@@ -906,14 +981,3 @@
) )
] ]
] ]
#place(bottom+left, scope: "parent", float: true)[
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable
])
]