Added folgen und Reihen
This commit is contained in:
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
venv
|
||||||
BIN
reihen_plot.png
Normal file
BIN
reihen_plot.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 102 KiB |
17
reihen_plot.py
Normal file
17
reihen_plot.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
from matplotlib import pyplot as plt
|
||||||
|
|
||||||
|
f = lambda x_prev: 1/4 * (x - 3)
|
||||||
|
x = 0
|
||||||
|
|
||||||
|
reihe = [x]
|
||||||
|
|
||||||
|
for i in range(100):
|
||||||
|
x = f(x)
|
||||||
|
reihe.append(x)
|
||||||
|
|
||||||
|
plt.plot(reihe, marker='o', linestyle='-')
|
||||||
|
plt.title("Reihen Plot")
|
||||||
|
plt.xlabel("n")
|
||||||
|
plt.ylabel("x_n")
|
||||||
|
plt.grid()
|
||||||
|
plt.savefig("reihen_plot.png", dpi=500)
|
||||||
@@ -9,6 +9,7 @@
|
|||||||
main-spacing: 1mm,
|
main-spacing: 1mm,
|
||||||
cross-spacing: 1mm,
|
cross-spacing: 1mm,
|
||||||
stdBlock([
|
stdBlock([
|
||||||
|
== #hlHeading([Trig Identitäten])
|
||||||
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||||
|
|
||||||
@@ -50,5 +51,91 @@
|
|||||||
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
|
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
|
||||||
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
||||||
]),
|
]),
|
||||||
sinTable
|
sinTable,
|
||||||
|
stdBlock([
|
||||||
|
#grid(
|
||||||
|
columns:(auto, auto),
|
||||||
|
gutter: 1mm,
|
||||||
|
[
|
||||||
|
== #hlHeading([Folgen])
|
||||||
|
$ lim_(x->infinity) a_n $
|
||||||
|
- *Beschränkt*: $exists k in RR$ so dass $abs(a_n) <= k$
|
||||||
|
- $epsilon$-Interval: $x in (a - epsilon, a + epsilon) <=> abs(x - a) < epsilon$
|
||||||
|
- *Beweiß:* Induktion/Ungleichung
|
||||||
|
- Hat min. eine konvergent Teilfolge
|
||||||
|
- *Konvergent*:
|
||||||
|
- Es gibt $forall epsilon > 0$ eine Index $n_epsilon in NN$ sodass \ $abs(a_n - a) < epsilon space forall n > n_epsilon$
|
||||||
|
- Divergent $-> infinity$, wenn $forall k in RR : exists space a_n > k$
|
||||||
|
- Divergent $-> -infinity$, wenn $forall k in RR : exists space a_n < k$
|
||||||
|
- Genzwert is eindeutig
|
||||||
|
- *Monoton: steigen/fallend* $a_(n+1) gt.eq.lt a_n$
|
||||||
|
- *Beweisen:* Induktion mit \ $a_(n+1) gt.eq.lt a_n$ oder $a_(n+1) / a_(n) gt.lt 1 $
|
||||||
|
- *Konvergenz $a_n -> a$ $<=>$ beschränkt UND monoton*
|
||||||
|
- $<=>$ Alle Teilefolgen konvergent zu $a$
|
||||||
|
- Wenn Häufungspunk $eq.not$ $=>$ divergent
|
||||||
|
- Sandwitch-Theorem
|
||||||
|
|
||||||
|
=== Kriterien
|
||||||
|
$not$ Kriterium $=>$ $not$ Konvergenz *ABER*\ Kriterium $arrow.r.double.not$ Konvergenz
|
||||||
|
- Canchy-Kriterium: $forall space epsilon > 0 space exists space n,m > n_epsilon $ \ sodass $(a_n - a_m) < epsilon$
|
||||||
|
],
|
||||||
|
grid.vline(stroke: 0.1mm + black, position: start),
|
||||||
|
pad([
|
||||||
|
=== Grenzwert Finden:
|
||||||
|
- "Bottom up" von Bekannten Ausdrücken
|
||||||
|
- Fixpunk Gleösenichung l $a = f(a)$ für $f(a_n)$
|
||||||
|
- Bernoulli-Ungleichung für $(a_n)^n$ \
|
||||||
|
$(1 + a)^n >= 1 + n a$ für $a >= -1$
|
||||||
|
|
||||||
|
Für Konvergent Folgen:
|
||||||
|
#grid(
|
||||||
|
columns: (auto, auto),
|
||||||
|
align: bottom,
|
||||||
|
gutter: 2mm,
|
||||||
|
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
|
||||||
|
grid.cell(
|
||||||
|
rowspan: 2,
|
||||||
|
[$ lim_(n->infinity) (a_n / b_n) = a / b $],
|
||||||
|
),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
|
||||||
|
)
|
||||||
|
|
||||||
|
== Spezifische Folgen
|
||||||
|
#grid(
|
||||||
|
columns: (auto, auto, auto),
|
||||||
|
column-gutter: 4mm,
|
||||||
|
row-gutter: 2mm,
|
||||||
|
align: bottom,
|
||||||
|
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||||
|
MathAlignLeft($ lim_(n->infinity) q^n = 0 $),
|
||||||
|
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) k = k, k in RR $)), [],
|
||||||
|
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $))
|
||||||
|
)
|
||||||
|
], left: 1mm)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
]),
|
||||||
|
stdBlock([
|
||||||
|
== #hlHeading([Reihen])
|
||||||
|
=== Spezifische Reihen
|
||||||
|
#grid(columns: (auto, auto), column-gutter: 4mm, row-gutter: 2mm,
|
||||||
|
[
|
||||||
|
Geometrische Reihe:
|
||||||
|
$ sum_(n=0)^infinity $
|
||||||
|
- $ a_(n+q) = q a_n $
|
||||||
|
- Beschränkt: $abs(q) <= 1$
|
||||||
|
- Unbeschränkt: $abs(q) > 1$
|
||||||
|
],
|
||||||
|
[
|
||||||
|
Harmonische Reihe:
|
||||||
|
$ sum_(n=0)^infinity 1/n = +infinity $
|
||||||
|
]
|
||||||
|
)
|
||||||
|
]),
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -18,6 +18,6 @@
|
|||||||
[$5/6pi$], [$150°$], hlMath([$-sqrt(3)/2$], color: hlRed), hlMath([$1/2$], color: hlGreen),
|
[$5/6pi$], [$150°$], hlMath([$-sqrt(3)/2$], color: hlRed), hlMath([$1/2$], color: hlGreen),
|
||||||
[$pi$], [$180°$], hlMath([$-1$], color: hlRed), hlMath([$0$]),
|
[$pi$], [$180°$], hlMath([$-1$], color: hlRed), hlMath([$0$]),
|
||||||
[$3/2pi$], [$270°$], hlMath([$0$]), hlMath([$-1$], color: hlRed),
|
[$3/2pi$], [$270°$], hlMath([$0$]), hlMath([$-1$], color: hlRed),
|
||||||
[$2pi$], [$360°$], hlMath([$1$], color: hlGreen), hlMath([$0$] mm)
|
[$2pi$], [$360°$], hlMath([$1$], color: hlGreen), hlMath([$0$])
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
@@ -20,6 +20,12 @@
|
|||||||
#let hlRed = rgb("#ff6969");
|
#let hlRed = rgb("#ff6969");
|
||||||
#let hlGreen = rgb("#76ff69");
|
#let hlGreen = rgb("#76ff69");
|
||||||
|
|
||||||
|
#let hlHeading(content, color: rgb("#ff69fd")) = box(
|
||||||
|
content,
|
||||||
|
outset: 2pt,
|
||||||
|
fill: color,
|
||||||
|
)
|
||||||
|
|
||||||
#let stdBlock(content) = {
|
#let stdBlock(content) = {
|
||||||
block(
|
block(
|
||||||
stroke: 0.2mm,
|
stroke: 0.2mm,
|
||||||
@@ -29,6 +35,10 @@
|
|||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#let MathAlignLeft(e) = {
|
||||||
|
align(left, block(e))
|
||||||
|
}
|
||||||
|
|
||||||
/* Usage examples:
|
/* Usage examples:
|
||||||
#blockm("Hello", top: 10pt, bottom: 10pt)
|
#blockm("Hello", top: 10pt, bottom: 10pt)
|
||||||
#blockm(#p("Paragraph inside a margin-set block."), left: 12pt, right: 12pt)
|
#blockm(#p("Paragraph inside a margin-set block."), left: 12pt, right: 12pt)
|
||||||
|
|||||||
Reference in New Issue
Block a user