moved more around
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 11s

This commit is contained in:
alexander
2026-01-19 01:04:12 +01:00
parent 8b24c9ea8e
commit ecdc00b4b2
4 changed files with 8 additions and 9 deletions

View File

@@ -0,0 +1,546 @@
#import "../lib/common_rewrite.typ" : *
#import "@preview/mannot:0.3.1"
#set page(
paper: "a4",
margin: (
bottom: 10mm,
top: 5mm,
left: 5mm,
right: 5mm
),
flipped:true,
footer: context [
#grid(
align: center,
columns: (1fr, 1fr, 1fr),
[#align(left, datetime.today().display("[day].[month].[year]"))],
[#align(center, counter(page).display("- 1 -"))],
[#align(right, image("../images/cc0.png", height: 5mm,))]
)
],
)
#place(top+center, scope: "parent", float: true, heading(
[Analysis 1 (IE)]
))
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
#let MathAlignLeft(e) = {
align(left, block(e))
}
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorFolgen = color.hsl(202.05deg, 92.13%, 75.1%)
#let colorReihen = color.hsl(280deg, 92.13%, 75.1%)
#let colorAbleitung = color.hsl(356.92deg, 92.13%, 75.1%)
#let colorIntegral = color.hsl(34.87deg, 92.13%, 75.1%)
#columns(4, gutter: 2mm)[
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Allgemeins]
#grid(
columns: (auto, auto),
row-gutter: 2mm,
column-gutter: 3mm,
[Dreiecksungleichung], [
$abs(x + y) <= abs(x) + abs(y)$ \
$abs(abs(x) - abs(y)) <= abs(x - y)$
],
[Cauchy-Schwarz-Ungleichung], [
$abs(x dot y) <= abs(abs(x) dot abs(y))$
],
[Geometrische Summenformel], [
#MathAlignLeft($ limits(sum)_(k=1)^(n) k = (n(n+1))/2 $)
],
[Bernoulli-Ungleichung ], [
$(1 + a)^n x in RR >= 1 + n a$
],
[Binomialkoeffizient], [
$binom(n, k) = (n!)/(k!(n-k)!)$
],
[Binomische Formel], [
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
],
[Fakultäten], [$ 0! = 1! = 1 $],
[Gausklammer], [
$floor(x) = text("floor")(x)$ \
$ceil(x) = text("ceil")(x)$
],
[Bekannte Werte], [
$e approx 2.71828$ ($2 < e < 3$) \
$pi approx 3.14159$ ($3 < pi < 4$)
]
)
]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
$z^n = r^n dot e^(phi i dot n) = r^n (cos(n phi) + i sin(n phi))$
#grid(
columns: (1fr, 1fr),
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
)
#subHeading(fill: colorAllgemein)[Trigonmetrie]
*Additionstheorem* \
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
*Doppelwinkel Formel* \
$cos(2x) = cos^2(x) - sin^2(x)$ \
$sin(2x) = 2sin(x)cos(x)$
#grid(
gutter: 5mm,
columns: (auto, auto),
[$cos^2(x) = (1 + cos(2x))/2$],
[$sin^2(x) = (1 - cos(2x))/2$]
)
$cos^2(x) + sin^2(x) = 1$
git config pull.rebase falsegit config pull.rebase false
#grid(
gutter: 5mm,
columns: (auto, auto),
[$cos(-x) = cos(x)$],
[$sin(-x) = -sin(x)$],
)
Subsitution mit Hilfsvariable
#grid(
gutter: 5mm,
row-gutter: 3mm,
columns: (auto, auto),
[$tan(x)=sin(x)/cos(x)$],
[$cot(x)=cos(x)/sin(x)$],
[$tan(x)=-cot(x + pi/2)$],
[$cot(x)=-tan(x + pi/2)$],
[$cos(x - pi/2) = sin(x)$],
[$sin(x + pi/2) = cos(x)$],
)
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
Für $x in [-1, 1]$ \
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
]
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen]
$ lim_(x -> infinity) a_n $
*Beschränkt:* $exists k in RR$ sodass $abs(a_n) <= k$
- Beweiße: durch Induktion
- Beweiße: Hat min. ein konvergent Teilefolge
- (Beweiße: Ungleichung $abs(a_n) <= k$)
*Monoton fallend/steigended*
- Beweise: Induktion
#grid(columns: (1fr, 1fr),
gutter: 1mm,
row-gutter: 2mm,
align(top+center, [*Fallend*]), align(top+center, [*Steigend*]),
[$ a_(n+1) <= a_(n) $],
[$ a_(n+1) >= a_(n) $],
[$ a_(n+1)/a_(n) < 1 $],
[$ a_(n+1)/a_(n) > 1 $],
)
*Konvergentz Allgemein*
$ lim_(n -> infinity) a_n = a $
$forall epsilon > 0 space exists n_epsilon in NN$ sodass \
- Konvergent $-> a$: $a_n in [a - epsilon, a + epsilon] $
- Divergent $-> infinity$: $a_n in [epsilon, infinity) $
- Divergent $-> infinity$: $a_n in (-infinity, epsilon) $
$space forall n > n_epsilon$
*Konvergentz Häufungspunkte*
- $a_n -> a <=>$ Alle Teilfolgen $-> a$
*Konvergenz Beweißen*
- Monoton UND Beschränkt $=>$ Konvergenz
NICHT Umgekehert
- (Cauchyfolge \
$forall epsilon > 0 space exists n_epsilon in NN space$ sodass \
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
Cauchyfolge $=>$ Konvergenz)
- $a_n$ unbeschränkt $=>$ divergenz
*Konvergent Grenzwert finden*
- Von Bekannten Ausdrücken aufbauen
- Fixpunk Gleichung: $a = f(a)$ \
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
- Bernoulli-Ungleichung Folgen der Art $(a_n)^n$: \
$(1 + a)^n >= 1 + n a$
- Sandwitchtheorem:\
$b_n -> x$: $a_n <= b_n <= c_n$, wenn $a_n -> x$ und $c_n -> x$ \
$b_n -> -infinity$: $b_n <= c_n$, wenn $c_n -> -infinity$ \
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
- Zwerlegen in Konvergente Teil folgen \
(Vorallem bei $(-1)^n dot a_n$)
]
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Konvergent Folge Regeln]
#grid(
columns: (auto, auto),
align: bottom,
gutter: 2mm,
[$ lim_(n->infinity) (a_n + b_n) = a + b $],
grid.cell(
rowspan: 2,
[$ lim_(n->infinity) (a_n / b_n) = a / b $ für ($b != 0$)],
),
MathAlignLeft($ lim_(n->infinity) (a_n dot b_n) = a dot b $),
MathAlignLeft($ lim_(n->infinity) sqrt(a_n) = sqrt(a) $),
MathAlignLeft($ lim_(n->infinity) abs(a_n) = abs(a) $),
MathAlignLeft($ lim_(n->infinity) c dot a_n = c dot lim_(n->infinity) a_n $),
)
]
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Bekannte Folgen]
#grid(
columns: (auto, auto, auto),
column-gutter: 4mm,
row-gutter: 2mm,
align: bottom,
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
[],
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
0 &abs(q),
1 &q = 1,
plus.minus infinity &q < -1,
plus infinity #h(5mm) &q > 1
) $)), []
)
]
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Teilfolgen]
$ a_k subset a_n space (text("z.B") k= 2n + 1) $
- Index muss streng monoton steigen!
- Beschränkte $a_n => text("min eine konvergente") a_k$
- Konvergenz-Werte von $a_k$ sind Häufungspunkte
- Wenn alle $a_k$ gegen #underline([genau eine]) Häufungspunk konverigiert $<=> a_n$ konvergent
]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Reihen]
$limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \
- *Absolute Konvergenz* \
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
- *Partialsummen* \
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
$=>$ _Absolute Konvergent_
- *(Cauchy-Kriterium)*\
konvergent wenn $forall epsilon > 0 space exists n_epsilon in NN$ \
sodass $abs(s_n - s_m) = abs(limits(sum)_(k=m+1)^(n)) < epsilon space$ \
$forall n_epsilon < m < n $
- *Leibnitzkriterium* \
Alternierend + Nullfolge \
$=> limits(sum)_(n=1)^infinity (-1)^n dot a_n$ konvergent
- *Vergleichskriterium* \
$a_n, b_n : abs(a_n) <= b_n space forall n in NN > N_0, N_0 in NN$
1. $limits(sum)_(n=0)^infinity b_n$ konvergent $=> limits(sum)_(n=0)^infinity abs(a_n)$ konvergent \
Suche $b_n$ für Konvergenz
2. $limits(sum)_(n=0)^infinity abs(a_n)$ divergent $=> limits(sum)_(n=0)^infinity b_n$ divergent \
Suche $abs(a_n)$ für Divergenz
Nützlich:
- Dreiecksungleichung
- $forall space n > N_0 in NN space exists k,q in RR$ \
sodass $q > 1$: $n^k <= q^n$ (Potenz stärker Polynom)
- *Quotientenkriterium und Wurzelkriterium*
1. $rho = lim_(n -> infinity) abs((a_(n+1))/(a_n)) $
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
- *Geometrische Reihe*
$limits(sum)_(n=0)^infinity q^n$
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
- *Harmonische Reihe* $limits(sum)_(n=0)^infinity 1/n = +infinity$
- *Reihendarstellungen*
1. $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
2. $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
3. $sin(x) = limits(sum)_(n=0)^infinity $
4. $cos(x) = limits(sum)_(n=0)^infinity $
]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Potenzreihen]
]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Bekannte Reihen]
*Geometrische Reihe:* $sum_(n=0)^infinity q^n$
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
*Andere*
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
]
#colbreak()
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Funktionen]
Sei $f : [a,b] -> RR$, stetig auf $x in [a,b]$
- *Zwischenwertsatz* \
$=> forall y in [f(a), f(b)] exists text("min. ein") x in [a,b] : f(x) = y$ \
_Beweiß für mindest. n Nst_
- *Satze von Rolle* \
diffbar $x in (a,b)$\
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
- *Mittelwertsatz*
diffbar $x in (a,b)$ \
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
- *Monotonie* \
$x in I : f'(x) < 0$: Streng monoton steigended \
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
(Analog bei (streng ) steigned/fallended)
]
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Stetigkeit]
*Allgemein*
$f(x)$ ist stetig wenn: \
$ limits(lim)_(x->x_0-) f(x) = limits(lim)_(x->x_0+) f(x) = f(x_0) $ \
$x in DD$ Beachten! Definitionslücken $!=$ unstätig \
Definition gilt auch für $I subset RR$
*Regeln*
$f(x),g(x)$ seinen stetig dann sind auch Stetig:
#grid(columns: (auto, auto, auto, auto, auto),
column-gutter: 4mm,
row-gutter: 2mm,
$f(x) + g(x)$, $f circle.small g$, $alpha dot f(x)$,
$f(x)/g(x)$, $f(x) dot g(x)$
)
*Bekannte Funktion*
#table(
columns: (1fr, 1fr),
table.header(
[*Stetig*], [*Nicht Stetig*]
),
stroke: (x, y) => (x: 0mm, y: 0.2mm),
[
- Polynome, gebrochen Rationale Fn
- $floor(x),ceil(x)$ für $x in RR without ZZ$
- Betrags Funktion
- $sin, cos, tan$
],
[
- Stufenfunktion
- Fall Unterscheidungen
- $floor(x),ceil(x)$ für $x in RR$
]
)
]
#bgBlock(fill: colorAbleitung)[
#subHeading(fill: colorAbleitung)[Ableitung]
*Differenzierbarkeit*
- $f(x)$ ist an der Stelle $x_0 in DD$ diffbar wenn \
#MathAlignLeft($ f'(x_0) = lim_(x->x_0 plus.minus) (f(x_0 + h - f(x_0))/h) $)
- $f(x)$ diffbar $=>$ $f(x)$ stetig
- Tangente an $x_0$: $f(x_0) + f'(x_0)(x - x_0)$
- Beste #underline([linear]) Annäherung
- Tangente $t(x)$ von $f(x)$ an der Stelle $x_0$: $ lim_(x->0) (f(x) - f(x_0))/(x-x_0) -f'(x_0) =0 $
*Ableitung Regeln*
#grid(
row-gutter: 3mm,
columns: (1fr, 1fr),
grid.cell(
colspan: 2,
[$f(x) + g(x) : f'(x) + g'(x) $]
),
grid.cell(
colspan: 2,
[$f(x) dot g(x) : f'(x)g(x) + f(x)g'(x) $]
),
grid.cell(
colspan: 2,
[#MathAlignLeft($ f(x)/g(x) : (f'(x)g(x) - f(x)g'(x))/(g(x)^2) $)]
),
[$f(x) = c : f'(x) = 0$],
[$c dot f(x) : c dot f'(x)$],
[$(x^(-n)) n in NN : n x^(n-1)$],
[$e^(x) : e^(x)$],
)
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
],
#block([
#set text(size: 10pt)
#table(
align: horizon,
columns: (1fr, 1fr, 1fr),
table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]),
row-gutter: 1mm,
fill: (x, y) => if x == 0 { color.hsl(180deg, 89.47%, 88.82%) }
else if x == 1 { color.hsl(180deg, 100%, 93.14%) } else
{ color.hsl(180deg, 81.82%, 95.69%) },
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
[$x ln(a x) - x$], [$ln(a x)$], [$1 / x$],
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
[$e^x$], [$e^x$], [$e^x$],
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
[$x arcsin(x) + sqrt(1 - x^2)$],
[$arcsin(x)$], [$1/sqrt(1 - x^2)$],
[$x arccos(x) - sqrt(1 - x^2)$],
[$arccos(x)$], [$-1/sqrt(1 - x^2)$],
[$x arctan(x) - 1/2 ln abs(1 + x^2)$],
[$arctan(x)$], [$1/(1 + x^2)$],
[$x op("arccot")(x) + \ 1/2 ln abs(1 + x^2)$],
[$op("arccot")(x)$], [$-1/(1 + x^2)$],
[$x op("arsinH")(x) + \ sqrt(1 + x^2)$],
[$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$],
[$x op("arcosH")(x) + \ sqrt(1 + x^2)$],
[$op("arcosH")(x)$], [$1/sqrt(x^2-1)$],
[$x op("artanH")(x) + \ 1/2 ln(1 - x^2)$],
[$op("artanH")(x)$], [$1/(1 - x^2)$],
)
])
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral])
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
*Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
3. $x$-kürzen sich weg
])
]
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable
])
#pagebreak()
== Folgen in $CC$
$z_n in C: lim z_n <=> lim abs(z_n -> infinity) = 0$
Alle folgen regelen gelten
Complexe Folge kann man in Realteil und Imag zerlegen
z.B.
$z_n = z^n z in CC$
$z = abs(z) dot e^(i phi) = abs(z)^n$
== Reihen in $CC$
Fast alles gilt auch.
Bis auf Leibnitzkriterium weil es keine Monotonie gibt
Geometrische Reihe gilt.
Exponential funktion
#MathAlignLeft($ e^z = lim_(n -> infinity) (1 + z/n)^n = sum_(n=0)^infinity (z^n)/(n!) space z in CC $)
Vorsicht: $(b^a)^n = b^(a dot c)$
Potenzreihen: Eine Fn der form:
#MathAlignLeft($ P(z) = sum^(infinity)_(n=0) a_n dot (z - z_0)^n space z, z_0 in CC $)
=== Satz
Konvergenz Radius $R = [0, infinity)$$$
1. $R = 0$ Konvergiet nur bei $z = 0$
2. $R in R : cases(
z in CC &abs(z - z_0) < R &: "abs Konvergent",
z in CC &abs(z - z_0) = R &: "keine Ahnung",
z in CC &abs(z - z_0) > R &: "Divergent"
)$
$ R = limsup_(n -> infinity) $
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral])
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
*Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
3. $x$-kürzen sich weg
])

View File

@@ -0,0 +1,177 @@
#import "@preview/biceps:0.0.1" : *
#import "@preview/mannot:0.3.1"
#import "../lib/styles.typ" : *
#import "../lib/common_rewrite.typ" : *
#set page(
paper: "a4",
margin: (
bottom: 10mm,
top: 5mm,
left: 5mm,
right: 5mm
),
flipped:true,
numbering: "— 1 —",
number-align: center
)
#place(top+center, scope: "parent", float: true, heading(
[Linear Algebra EI]
))
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorFolgen = color.hsl(202.05deg, 92.13%, 75.1%)
#let colorReihen = color.hsl(280deg, 92.13%, 75.1%)
#let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
#let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
#let MathAlignLeft(e) = {
align(left, block(e))
}
#columns(4, gutter: 2mm)[
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Notation]
]
#bgBlock(fill: colorGruppen)[
#subHeading(fill: colorGruppen)[Gruppen]
*Halbgruppe:* $(M, compose): M times M arrow M$
- Assoziativgesetz: $a dot (b dot c) = (a dot b) dot c$
*Monoid* Halbgruppe $M$ mit:
- Identitätselment: $e in M : a e = e a = a$
*Kommutativ/abelsch:* Halbgruppe/Monoid mit
- Kommutativgesetz; $a dot b = b dot a$
#SeperatorLine
*Gruppe:* Monoid mit
- Inverse: $forall a in G : exists space a a^(-1) = a^(-1)a = e$
- Eindeutig Lösung für Gleichungen
Zusatz:
- Inverseregel: $(a dot b)^(-1) = b^(-1) dot a^(-1)$
*Untergruppe:*
- Gruppe: $(G, dot)$, $U subset G$
- $a,b in U <=> a dot b in U$
- $a in U <=> a^(-1) in U$
- $e in U$ (Neutrales Element)
*Direktes Produkt:*\
$(G_1,dot_1) times (G_2,dot_2) times ... $ \
$(a_1,b_1,...)(a_2,b_2,...)= (a_1 dot_1 b_1, a_2 dot_2 b_2, ...)$
#SeperatorLine
*Ring:* (auch Schiefkörper) Menge $R$ mit:
- $(R, +)$ kommutativ Gruppe
- $(R, dot)$ Halbgruppe
- $(a + b) dot c = (a dot c) + (a dot b) space$ (Distributiv Gesetz)
#colbreak()
*Körper:* Menge $K$ mit:
- $(K, +), (K without {0} , dot)$ kommutativ Gruppe \
($0$ ist Neutrales Element von $+$)
- $(a + b) dot c = (a dot c) + (a dot b) space$ (Distributiv Gesetz)
_Beweiß durch Überprüfung der Eigneschaften_
]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Vektorräume (VR)]
$(V, plus.o, dot.o)$ ist ein über Körper $K$
- $+: V times V -> V, (v,w) -> v + w$
- $dot: K times V -> V, (lambda,v) -> lambda v$
Es gilt: $lambda,mu in K, space v,w in V$
- $(lambda mu)v = lambda (mu v)$
- $lambda(v + w) = lambda v + lambda w$\
$(lambda + mu)v = lambda v + lambda mu$
- $1v = v$, $arrow(0) in V$
Bsp: $KK^n$ ($RR^n, CC^n$)
*Untervektorraum:* $U subset V$ \
$v,w in U, lambda in K$ \
$ <=> v + w in U$, $arrow(0) in U$ UND $lambda v in U$
- $(U inter W) subset V$
]
#bgBlock(fill: colorReihen)[
#subHeading(fill: colorReihen)[Basis und Dim]
*Linear Abbildung:* $Phi: V -> V$
- $Phi(0) = 0$
- $Phi(lambda v + w) = lambda Phi(v) + Phi(w)$
- Menge aller linearen Abbildung: $L(V,W)$
*Basis:*\
linear unabhänige Menge $B$ an $v in V$, sodass $op("spann")(v_1, ..., v_n) = op("spann")(V)$
- $B$ ist Erzeugerssystem von $V$
- Endliche Erzeugerssystem: $abs(B_1)=abs(B_2)...$
*Linear unabhänige:*
Linearkombintation in welcher $lambda_0 = 0, ..., lambda_n = 0$ die EINZIEGE Lösung für $lambda_0 v_0 + ... + lambda_1 v_1 = 0$
*Basisergänzungssatz:* \
Sei ${v_1, ... v_n}$ lin. unabhänig und $M$ kein Basis. Dann $exists v_(n+1)$ sodass ${v_1, ... v_n, v_(n+1)}$ lin unabhänig (aber evt. eine Basis ist)
*Dimension:* $dim V = \#$Vektoren der Basis
- $dim V = infinity$, wenn $V$ nicht endlich erzeugt ist
]
#bgBlock(fill: colorAbbildungen)[
#subHeading([Abbildungen], fill: colorAbbildungen)
$f(x)=y, f: A -> B$
*Injectiv (Monomorphismus):*\
_one to one_ \
$f(x) = f(y) <=> x = y$
*Surjectiv (Epimorhismis):* \
_Output space coverered_ \
- Zeigen das $f(f^(-1)(x)) = x$ für $x in DD$
- $forall x in B: exists x in A : f(x) = y$
NICHT surjektiv wenn $abs(a) < abs(b)$
*Bijektiv (Isomorphismus):* \
_Injectiv und Surjectiv_ \
- In einer Gruppe ist $f(x) = x c$ für $c,x in G$ bijektiv
- isomorph: $V,W$ VRs, $f$ bijektiv $f(V) = W => V tilde.equiv W$
Beweiß durch Wiederspruch \
für Gegenbeweiß
*Endomorphismus:* $A -> B$ mit $A, B subset.eq C$
*Automorphismus:* Endomorphismus und Bijektiv (Isomorphismus)
*Vektorraum-Homomorphismus:* linear Abbildung zwischen VR
]
#bgBlock(fill: colorAbbildungen)[
#subHeading(fill: colorAbbildungen)[Spann und Bild]
*Spann:*
- Vektorraum $V : op("spann")(V) = limits(inter)_(M subset V) U$
- $B : op("spann")(U) = {lambda_0 v_0 + ... + lambda_n v_n, lambda_0, ... lambda_n in K}$
- $op("spann")(Phi(M)) = Phi(op("spann")(M))$
*Urbild:* $f^(-1)(I subset B) subset.eq A$
*Bild:* Wertemenge $WW$
- $f(I subset A) = B$ (Oft $I = A$)
- Basis $B : op("spann")(B)$
- $op("Bild") Phi := {Phi in W | v in V}$
*Nullraum/Kern:* \
$op("Kern") Phi := {v in V | Phi(v) = 0}$
*Rang*
$op("Rang") f := dim op("Bild") f$
]
]

View File

@@ -0,0 +1,208 @@
#import "../lib/common_rewrite.typ" : *
#import "@preview/mannot:0.3.1"
#import "@preview/zap:0.5.0"
#show math.equation.where(block: true): it => math.inline(it)
#set page(
paper: "a4",
margin: (
bottom: 10mm,
top: 5mm,
left: 5mm,
right: 5mm
),
flipped:true,
footer: context [
#grid(
align: center,
columns: (1fr, 1fr, 1fr),
[#align(left, datetime.today().display("[day].[month].[year]"))],
[#align(center, counter(page).display("- 1 -"))],
[#align(right, image("../images/cc0.png", height: 5mm,))]
)
],
)
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
#let colorEineTore = color.hsl(202.05deg, 92.13%, 75.1%)
#let colorZweiTore = color.hsl(235.9deg, 92.13%, 75.1%)
#let colorAnalyseVerfahren = color.hsl(280deg, 92.13%, 75.1%)
#let colorComplexAC = color.hsl(356.92deg, 92.13%, 75.1%)
#let colorMathe = color.hsl(34.87deg, 92.13%, 75.1%)
#place(top+center, scope: "parent", float: true, heading(
[Schaltungstheorie]
))
#columns(4, gutter: 2mm)[
#bgBlock(fill: colorEineTore)[
#subHeading(fill: colorEineTore)[Quelle Wandlung]
#zap.circuit({
import zap: *
set-style(scale: (x: 0.75, y:0.75), fill: none)
resistor("R1", (-2, 0), (0, 0))
vsource("V1", (-2, 0), (-2, -2))
wire((-2, -2), (0, -2))
node("n1", (0, 0), label: "1")
node("n2", (0, -2), label: "2")
})
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Graphen und Matrizen]
$bold(i_b)$ (oder $bold(i)$): Zweigstrom-Vektor \
$bold(u_b)$ (oder $bold(u)$): Zweigspannungs-Vektor \
$bold(i_m)$ : Maschenstrom-Vektor \
#text(rgb(20%, 20%, 20%))[(Strom in einer viruellen Masche)] \
$bold(u_k)$ : Kontenspannungs-Vektor \
#text(rgb(20%, 20%, 20%))[(Spannung zwischen Referenzknoten und Knoten k)] \
#line(length: 100%, stroke: (thickness: 0.2mm))
Knotenzidenzmatrix $bold(A)$
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
$bold(A^T) : bold(u_b)-> bold(u_k)$
$
bold(A) = quad mannot.mark(mat(
a_11, a_12, ..., a_(1m);
a_21, a_22, ..., a_(2m);
dots.v, dots.v, dots.down, dots.v;
a_(n 1), a_(n 2), ..., a_(n m)
), tag: #<1>)
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Knoten]], dx: 5mm)
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
a in {-1, 0, 1}
$
#line(length: 100%, stroke: (thickness: 0.2mm))
Mascheninsidenz Matrix $bold(B)$\
$bold(B) : bold(u_b) -> text("Zweigspannungsbilanz") = 0$ \
$bold(B^T) : bold(i_m) -> i_b$
$
bold(B) = quad mannot.mark(mat(
b_11, b_12, ..., b_(1m);
b_21, b_22, ..., b_(2m);
dots.v, dots.v, dots.down, dots.v;
b_(n 1), b_(n 2), ..., b_(n m)
), tag: #<1>)
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Maschen]], dx: 6mm)
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
b in {-1, 0, 1}
$
#line(length: 100%, stroke: (thickness: 0.2mm))
*KCL und KVL* \
KCL in Nullraum: $ bold(A) bold(i_b) = bold(0)$ \
KVL in Bildraum: $ bold(A^T) bold(u_k) = bold(u_b)$
KVL in Nullraum: $bold(B) bold(u_b) = bold(0)$ \
KCL in Bildraum: $bold(B^T) bold(i_m) = bold(i_b)$ \
*Tellegen'sche Satz* \
$bold(A B^T) = bold(B^T A) = 0$ \
$bold(u_b^T i_b) = 0$
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Machenstrom-/Knotenpotenzial-Analyse]
]
#bgBlock(fill: colorAnalyseVerfahren)[
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
]
]
#pagebreak()
#place(bottom+left, scope: "parent", float: true)[
#bgBlock(fill: colorZweiTore)[
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
#show table.cell: it => pad(),
#table(
columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
align: center,
gutter: 0.1mm,
[In $->$], $bold(R)$, $bold(G)$, $bold(H)$, $bold(H')$, $bold(A)$, $bold(A')$,
$bold(R)$,
$mat(r_11, r_12; r_21, r_22)$,
$1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
$bold(G)$,
$1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
$mat(g_11, g_12; g_21, g_22)$,
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
$bold(H)$,
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
$mat(h_11, h_12; h_21, h_22)$,
$1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
$bold(H')$,
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
$1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
$mat(h'_11, h'_12; h'_21, h'_22)$,
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
$bold(A)$,
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
$mat(a_11, a_12; a_21, a_22)$,
$1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
$bold(A')$,
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
$1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
$mat(a'_11, a'_12; a'_21, a'_22)$,
)
]
]
#place(bottom+left, scope: "parent", float: true)[
#bgBlock(fill: colorAllgemein, [
#subHeading(fill: colorAllgemein, [Sin-Table])
#sinTable
])
]