This commit is contained in:
9043
src/Analysis_rewrite.pdf
Normal file
9043
src/Analysis_rewrite.pdf
Normal file
File diff suppressed because one or more lines are too long
@@ -48,7 +48,7 @@
|
|||||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
||||||
],
|
],
|
||||||
[Geometrische Summenformel], [
|
[Geometrische Summenformel], [
|
||||||
#MathAlignLeft($ sum_(k=1)^(n) k = (n(n+1))/2 $)
|
#MathAlignLeft($ limits(sum)_(k=1)^(n) k = (n(n+1))/2 $)
|
||||||
],
|
],
|
||||||
[Bernoulli-Ungleichung ], [
|
[Bernoulli-Ungleichung ], [
|
||||||
$(1 + a)^n x in RR >= 1 + n a$
|
$(1 + a)^n x in RR >= 1 + n a$
|
||||||
@@ -64,10 +64,58 @@
|
|||||||
[Gausklammer], [
|
[Gausklammer], [
|
||||||
$floor(x) = text("floor")(x)$ \
|
$floor(x) = text("floor")(x)$ \
|
||||||
$ceil(x) = text("ceil")(x)$
|
$ceil(x) = text("ceil")(x)$
|
||||||
|
],
|
||||||
|
[Bekannte Werte], [
|
||||||
|
$e approx 2.71828$ ($2 < e < 3$) \
|
||||||
|
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
|
#bgBlock(fill: colorAllgemein)[
|
||||||
|
#subHeading(fill: colorAllgemein)[Trigonmetrie]
|
||||||
|
$sin(x+y) = cos(x)sin(y) + sin(x)cos(y)$ \
|
||||||
|
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||||
|
|
||||||
|
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||||
|
$sin(2x) = 2sin(x)cos(x)$
|
||||||
|
|
||||||
|
#grid(
|
||||||
|
gutter: 5mm,
|
||||||
|
columns: (auto, auto),
|
||||||
|
[$cos^2(x) = (1 + cos(2x))/2$],
|
||||||
|
[$sin^2(x) = (1 - cos(2x))/2$]
|
||||||
|
)
|
||||||
|
|
||||||
|
$cos^2(x) + sin^2(x) = 1$
|
||||||
|
|
||||||
|
#grid(
|
||||||
|
gutter: 5mm,
|
||||||
|
columns: (auto, auto),
|
||||||
|
[$cos(-x) = cos(x)$],
|
||||||
|
[$sin(-x) = -sin(x)$],
|
||||||
|
)
|
||||||
|
|
||||||
|
Subsitution mit Hilfsvariable
|
||||||
|
|
||||||
|
#grid(
|
||||||
|
gutter: 5mm,
|
||||||
|
row-gutter: 3mm,
|
||||||
|
columns: (auto, auto),
|
||||||
|
[$tan(x)=sin(x)/cos(x)$],
|
||||||
|
[$cot(x)=cos(x)/sin(x)$],
|
||||||
|
[$tan(x)=-cot(x + pi/2)$],
|
||||||
|
[$cot(x)=-tan(x + pi/2)$],
|
||||||
|
[$cos(x - pi/2) = sin(x)$],
|
||||||
|
[$sin(x + pi/2) = cos(x)$],
|
||||||
|
)
|
||||||
|
$sin(x)cos(y) = 1/2sin(x - y) + 1/2sin(x + y)$
|
||||||
|
|
||||||
|
Für $x in [-1, 1]$ \
|
||||||
|
$arcsin(x) = -arccos(x) - pi/2 in [-pi/2, pi/2]$ \
|
||||||
|
$arccos(x) = -arcsin(x) + pi/2 in [0, pi]$
|
||||||
|
]
|
||||||
|
|
||||||
#bgBlock(fill: colorFolgen)[
|
#bgBlock(fill: colorFolgen)[
|
||||||
#subHeading(fill: colorFolgen)[Folgen]
|
#subHeading(fill: colorFolgen)[Folgen]
|
||||||
$ lim_(x -> infinity) a_n $
|
$ lim_(x -> infinity) a_n $
|
||||||
@@ -170,16 +218,82 @@
|
|||||||
|
|
||||||
#bgBlock(fill: colorReihen)[
|
#bgBlock(fill: colorReihen)[
|
||||||
#subHeading(fill: colorReihen)[Reihen]
|
#subHeading(fill: colorReihen)[Reihen]
|
||||||
|
$limits(lim)_(n->infinity) a_n != 0 => limits(sum)_(n=1)^infinity a_n$ konverigiert NICHT \
|
||||||
|
|
||||||
|
- *Absolute Konvergenz* \
|
||||||
|
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
- *Partialsummen* \
|
||||||
|
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
|
||||||
|
$=>$ _Absolute Konvergent_
|
||||||
|
|
||||||
|
- *(Cauchy-Kriterium)*\
|
||||||
|
konvergent wenn $forall epsilon > 0 space exists n_epsilon in NN$ \
|
||||||
|
sodass $abs(s_n - s_m) = abs(limits(sum)_(k=m+1)^(n)) < epsilon space$ \
|
||||||
|
$forall n_epsilon < m < n $
|
||||||
|
|
||||||
|
- *Leibnitzkriterium* \
|
||||||
|
Alternierend + Nullfolge \
|
||||||
|
$=> limits(sum)_(n=1)^infinity (-1)^n dot a_n$ konvergent
|
||||||
|
|
||||||
|
- *Vergleichskriterium* \
|
||||||
|
$a_n, b_n : abs(a_n) <= b_n space forall n in NN > N_0, N_0 in NN$
|
||||||
|
1. $limits(sum)_(n=0)^infinity b_n$ konvergent $=> limits(sum)_(n=0)^infinity abs(a_n)$ konvergent \
|
||||||
|
Suche $b_n$ für Konvergenz
|
||||||
|
2. $limits(sum)_(n=0)^infinity abs(a_n)$ divergent $=> limits(sum)_(n=0)^infinity b_n$ divergent \
|
||||||
|
Suche $abs(a_n)$ für Divergenz
|
||||||
|
|
||||||
|
Nützlich:
|
||||||
|
- Dreiecksungleichung
|
||||||
|
- $forall space n > N_0 in NN space exists k,q in RR$ \
|
||||||
|
sodass $q > 1$: $n^k <= q^n$ (Potenz stärker Polynom)
|
||||||
|
|
||||||
|
- *Quotientenkriterium und Wurzelkriterium*
|
||||||
|
1. $rho = lim_(n -> infinity) abs((a_(n+1))/(a_n)) $
|
||||||
|
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
|
||||||
|
|
||||||
|
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||||
|
|
||||||
|
- *Geometrische Reihe*
|
||||||
|
$limits(sum)_(n=0)^infinity q^n$
|
||||||
|
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||||
|
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||||
|
- *Harmonische Reihe* $limits(sum)_(n=0)^infinity 1/n = +infinity$
|
||||||
|
|
||||||
|
- *Reihendarstellungen*
|
||||||
|
1. $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||||
|
2. $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||||
|
3. $sin(x) = limits(sum)_(n=0)^infinity $
|
||||||
|
4. $cos(x) = limits(sum)_(n=0)^infinity $
|
||||||
|
|
||||||
]
|
]
|
||||||
|
|
||||||
#bgBlock(fill: colorReihen)[
|
#bgBlock(fill: colorReihen)[
|
||||||
#subHeading(fill: colorReihen)[Potenzreihen]
|
#subHeading(fill: colorReihen)[Potenzreihen]
|
||||||
]
|
]
|
||||||
|
|
||||||
#colbreak()
|
|
||||||
|
|
||||||
#bgBlock(fill: colorAbleitung)[
|
#bgBlock(fill: colorAbleitung)[
|
||||||
#subHeading(fill: colorAbleitung)[Funktionen]
|
#subHeading(fill: colorAbleitung)[Funktionen]
|
||||||
|
Sei $f : [a,b] -> RR$, stetig auf $x in [a,b]$
|
||||||
|
- *Zwischenwertsatz* \
|
||||||
|
$=> forall y in [f(a), f(b)] exists text("min. ein") x in [a,b] : f(x) = y$ \
|
||||||
|
_Beweiß für mindest. n Nst_
|
||||||
|
- *Satze von Rolle* \
|
||||||
|
diffbar $x in (a,b)$\
|
||||||
|
$f(a) = f(b) => exists text("min. ein") x_0 in (a,b) : f'(x_0) = 0$
|
||||||
|
_Beweiß für max. n Nst, durchWiederspruchsbweiß mit $f(a)=f(b)=0$ und Wiederholte Ableitung_
|
||||||
|
|
||||||
|
- *Mittelwertsatz*
|
||||||
|
diffbar $x in (a,b)$ \
|
||||||
|
$=> exists x_0 : f'(x_0)=(f(b) - f(a))/(a-b)$
|
||||||
|
|
||||||
|
- *Monotonie* \
|
||||||
|
$x in I : f'(x) < 0$: Streng monoton steigended \
|
||||||
|
$x_0,x_1 in I, x_0 < x_1 => f(x_0) < f(x_1)$ \
|
||||||
|
(Analog bei (streng ) steigned/fallended)
|
||||||
]
|
]
|
||||||
|
|
||||||
#bgBlock(fill: colorAbleitung)[
|
#bgBlock(fill: colorAbleitung)[
|
||||||
@@ -256,7 +370,47 @@
|
|||||||
[$e^(x) : e^(x)$],
|
[$e^(x) : e^(x)$],
|
||||||
)
|
)
|
||||||
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
|
- Kettenregel: $f(g(x)) : f'(g(x)) dot g'(x)$
|
||||||
]
|
],
|
||||||
|
|
||||||
|
#block([
|
||||||
|
#set text(size: 10pt)
|
||||||
|
#table(
|
||||||
|
align: horizon,
|
||||||
|
columns: (1fr, 1fr, 1fr),
|
||||||
|
table.header([*$F(x)$*], [*$f(x)$*], [*$f'(x)$*]),
|
||||||
|
row-gutter: 1mm,
|
||||||
|
fill: (x, y) => if x == 0 { color.hsl(180deg, 89.47%, 88.82%) }
|
||||||
|
else if x == 1 { color.hsl(180deg, 100%, 93.14%) } else
|
||||||
|
{ color.hsl(180deg, 81.82%, 95.69%) },
|
||||||
|
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
|
||||||
|
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
|
||||||
|
[$x ln(a x) - x$], [$ln(a x)$], [$1 / x$],
|
||||||
|
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
|
||||||
|
[$e^x$], [$e^x$], [$e^x$],
|
||||||
|
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
|
||||||
|
|
||||||
|
[$x arcsin(x) + sqrt(1 - x^2)$],
|
||||||
|
[$arcsin(x)$], [$1/sqrt(1 - x^2)$],
|
||||||
|
|
||||||
|
[$x arccos(x) - sqrt(1 - x^2)$],
|
||||||
|
[$arccos(x)$], [$-1/sqrt(1 - x^2)$],
|
||||||
|
|
||||||
|
[$x arctan(x) - 1/2 ln abs(1 + x^2)$],
|
||||||
|
[$arctan(x)$], [$1/(1 + x^2)$],
|
||||||
|
|
||||||
|
[$x op("arccot")(x) + \ 1/2 ln abs(1 + x^2)$],
|
||||||
|
[$op("arccot")(x)$], [$-1/(1 + x^2)$],
|
||||||
|
|
||||||
|
[$x op("arsinH")(x) + \ sqrt(1 + x^2)$],
|
||||||
|
[$op("arsinH")(x)$], [$1/sqrt(1 + x^2)$],
|
||||||
|
|
||||||
|
[$x op("arcosH")(x) + \ sqrt(1 + x^2)$],
|
||||||
|
[$op("arcosH")(x)$], [$1/sqrt(x^2-1)$],
|
||||||
|
|
||||||
|
[$x op("artanH")(x) + \ 1/2 ln(1 - x^2)$],
|
||||||
|
[$op("artanH")(x)$], [$1/(1 - x^2)$],
|
||||||
|
)
|
||||||
|
])
|
||||||
|
|
||||||
#colbreak()
|
#colbreak()
|
||||||
]
|
]
|
||||||
Reference in New Issue
Block a user