This commit is contained in:
BIN
reihen_plot.png
BIN
reihen_plot.png
Binary file not shown.
|
Before Width: | Height: | Size: 102 KiB |
@@ -1,17 +0,0 @@
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
f = lambda x_prev: 1/4 * (x - 3)
|
||||
x = 0
|
||||
|
||||
reihe = [x]
|
||||
|
||||
for i in range(100):
|
||||
x = f(x)
|
||||
reihe.append(x)
|
||||
|
||||
plt.plot(reihe, marker='o', linestyle='-')
|
||||
plt.title("Reihen Plot")
|
||||
plt.xlabel("n")
|
||||
plt.ylabel("x_n")
|
||||
plt.grid()
|
||||
plt.savefig("reihen_plot.png", dpi=500)
|
||||
@@ -0,0 +1,208 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
#import "@preview/zap:0.5.0"
|
||||
|
||||
#show math.equation.where(block: true): it => math.inline(it)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
bottom: 10mm,
|
||||
top: 5mm,
|
||||
left: 5mm,
|
||||
right: 5mm
|
||||
),
|
||||
flipped:true,
|
||||
footer: context [
|
||||
#grid(
|
||||
align: center,
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorEineTore = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorZweiTore = color.hsl(235.9deg, 92.13%, 75.1%)
|
||||
#let colorAnalyseVerfahren = color.hsl(280deg, 92.13%, 75.1%)
|
||||
#let colorComplexAC = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
#let colorMathe = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Schaltungstheorie]
|
||||
))
|
||||
|
||||
|
||||
#columns(4, gutter: 2mm)[
|
||||
#bgBlock(fill: colorEineTore)[
|
||||
#subHeading(fill: colorEineTore)[Quelle Wandlung]
|
||||
|
||||
#zap.circuit({
|
||||
import zap: *
|
||||
set-style(scale: (x: 0.75, y:0.75), fill: none)
|
||||
resistor("R1", (-2, 0), (0, 0))
|
||||
vsource("V1", (-2, 0), (-2, -2))
|
||||
wire((-2, -2), (0, -2))
|
||||
node("n1", (0, 0), label: "1")
|
||||
node("n2", (0, -2), label: "2")
|
||||
})
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Graphen und Matrizen]
|
||||
|
||||
$bold(i_b)$ (oder $bold(i)$): Zweigstrom-Vektor \
|
||||
$bold(u_b)$ (oder $bold(u)$): Zweigspannungs-Vektor \
|
||||
$bold(i_m)$ : Maschenstrom-Vektor \
|
||||
#text(rgb(20%, 20%, 20%))[(Strom in einer viruellen Masche)] \
|
||||
$bold(u_k)$ : Kontenspannungs-Vektor \
|
||||
#text(rgb(20%, 20%, 20%))[(Spannung zwischen Referenzknoten und Knoten k)] \
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
Knotenzidenzmatrix $bold(A)$
|
||||
|
||||
$bold(A) : bold(i_k) -> text("Knotenstrombianz") = 0$ \
|
||||
$bold(A^T) : bold(u_b)-> bold(u_k)$
|
||||
$
|
||||
bold(A) = quad mannot.mark(mat(
|
||||
a_11, a_12, ..., a_(1m);
|
||||
a_21, a_22, ..., a_(2m);
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
a_(n 1), a_(n 2), ..., a_(n m)
|
||||
), tag: #<1>)
|
||||
|
||||
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Knoten]], dx: 5mm)
|
||||
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
|
||||
|
||||
a in {-1, 0, 1}
|
||||
$
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
Mascheninsidenz Matrix $bold(B)$\
|
||||
|
||||
|
||||
$bold(B) : bold(u_b) -> text("Zweigspannungsbilanz") = 0$ \
|
||||
$bold(B^T) : bold(i_m) -> i_b$
|
||||
|
||||
$
|
||||
bold(B) = quad mannot.mark(mat(
|
||||
b_11, b_12, ..., b_(1m);
|
||||
b_21, b_22, ..., b_(2m);
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
b_(n 1), b_(n 2), ..., b_(n m)
|
||||
), tag: #<1>)
|
||||
|
||||
#mannot.annot(<1>, pos:left, text(rgb("#404296"))[#rotate(-90deg)[$<-$ Maschen]], dx: 6mm)
|
||||
#mannot.annot(<1>, pos:bottom, text(rgb("#404296"))[Zweige $->$], dy: -0.5mm)
|
||||
|
||||
b in {-1, 0, 1}
|
||||
$
|
||||
|
||||
#line(length: 100%, stroke: (thickness: 0.2mm))
|
||||
|
||||
*KCL und KVL* \
|
||||
|
||||
KCL in Nullraum: $ bold(A) bold(i_b) = bold(0)$ \
|
||||
KVL in Bildraum: $ bold(A^T) bold(u_k) = bold(u_b)$
|
||||
|
||||
KVL in Nullraum: $bold(B) bold(u_b) = bold(0)$ \
|
||||
KCL in Bildraum: $bold(B^T) bold(i_m) = bold(i_b)$ \
|
||||
|
||||
*Tellegen'sche Satz* \
|
||||
$bold(A B^T) = bold(B^T A) = 0$ \
|
||||
$bold(u_b^T i_b) = 0$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Baumkonzept]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Machenstrom-/Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAnalyseVerfahren)[
|
||||
#subHeading(fill: colorAnalyseVerfahren)[Reduzierte Knotenpotenzial-Analyse]
|
||||
]
|
||||
|
||||
|
||||
]
|
||||
|
||||
#pagebreak()
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorZweiTore)[
|
||||
#subHeading(fill: colorZweiTore)[Umrechnung Zweitormatrizen]
|
||||
#show table.cell: it => pad(),
|
||||
|
||||
#table(
|
||||
columns: (auto, 1fr, 1fr, 1fr, 1fr, 1fr, 1fr),
|
||||
align: center,
|
||||
gutter: 0.1mm,
|
||||
[In $->$], $bold(R)$, $bold(G)$, $bold(H)$, $bold(H')$, $bold(A)$, $bold(A')$,
|
||||
|
||||
$bold(R)$,
|
||||
$mat(r_11, r_12; r_21, r_22)$,
|
||||
$1/det(bold(G)) mat(g_22, -g_12; -g_21, g_11)$,
|
||||
$1/h_22 mat(det(bold(H)), h_12; -h_21, 1)$,
|
||||
$1/h'_11 mat(1, -h'_12; h'_21, det(bold(H')))$,
|
||||
$1/a_21 mat(a_11, det(bold(A)); 1, a_22)$,
|
||||
$1/a'_21 mat(a'_22, 1; det(bold(A')), a'_11)$,
|
||||
|
||||
$bold(G)$,
|
||||
$1/det(bold(R)) mat(r_22, -r_12; -r_21, r_11)$,
|
||||
$mat(g_11, g_12; g_21, g_22)$,
|
||||
$1/h_11 mat(1, -h_12; h_21, det(bold(H)))$,
|
||||
$1/h'_22 mat(det(bold(H')), h'_12; -h'_21, 1)$,
|
||||
$1/a_12 mat(a_22, -det(bold(A)); -1, a_11)$,
|
||||
$1/a'_12 mat(a'_11, -1; -det(bold(A')), a'_22)$,
|
||||
|
||||
$bold(H)$,
|
||||
$1/r_22 mat(det(bold(R)), r_12; -r_21, 1)$,
|
||||
$1/g_11 mat(1, -g_12; g_21, det(bold(G)))$,
|
||||
$mat(h_11, h_12; h_21, h_22)$,
|
||||
$1/det(bold(H')) mat(h'_22, -h'_12; -h'_21, h'_11)$,
|
||||
$1/a_22 mat(a_12, det(bold(A)); -1, a_21)$,
|
||||
$1/a'_11 mat(a'_12, 1; -det(bold(A')), a'_21)$,
|
||||
|
||||
$bold(H')$,
|
||||
$1/r_11 mat(1, -r_12; r_21, det(bold(R)))$,
|
||||
$1/g_22 mat(det(bold(G)), g_12; -g_21, 1)$,
|
||||
$1/det(bold(H)) mat(h_22, -h_12; -h_21, h_11)$,
|
||||
$mat(h'_11, h'_12; h'_21, h'_22)$,
|
||||
$1/a_11 mat(a_21, -det(bold(A)); 1, a_12)$,
|
||||
$1/a'_22 mat(a'_21, -1; det(bold(A')), a'_12)$,
|
||||
|
||||
$bold(A)$,
|
||||
$1/r_21 mat(r_11, det(bold(R)); 1, r_22)$,
|
||||
$1/g_21 mat(-g_22, -1; -det(bold(G)), -g_11)$,
|
||||
$1/h_21 mat(-det(bold(H)), -h_11; -h_22, -1)$,
|
||||
$1/h'_21 mat(1, h'_22; h'_11, det(bold(H')))$,
|
||||
$mat(a_11, a_12; a_21, a_22)$,
|
||||
$1/det(bold(A')) mat(a'_22, a'_12; a'_21, a'_11)$,
|
||||
|
||||
$bold(A')$,
|
||||
$1/r_12 mat(r_22, det(bold(R)); 1, r_11)$,
|
||||
$1/g_12 mat(-g_11, -1; -det(bold(G)), -g_22)$,
|
||||
$1/h_12 mat(1, h_11; h_22, det(bold(H)))$,
|
||||
$1/h'_12 mat(-det(bold(H')), -h'_22; -h'_11, -1)$,
|
||||
$1/det(bold(A)) mat(a_22, a_12; a_21, a_11)$,
|
||||
$mat(a'_11, a'_12; a'_21, a'_22)$,
|
||||
)
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
#place(bottom+left, scope: "parent", float: true)[
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
#sinTable
|
||||
])
|
||||
]
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
#import "lib/common_rewrite.typ" : *
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
|
||||
#set page(
|
||||
@@ -16,7 +16,7 @@
|
||||
columns: (1fr, 1fr, 1fr),
|
||||
[#align(left, datetime.today().display("[day].[month].[year]"))],
|
||||
[#align(center, counter(page).display("- 1 -"))],
|
||||
[#align(right, image("images/cc0.png", height: 5mm,))]
|
||||
[#align(right, image("../images/cc0.png", height: 5mm,))]
|
||||
)
|
||||
],
|
||||
)
|
||||
@@ -76,32 +76,6 @@
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Trigonometrie]
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#table(
|
||||
inset: 1.5mm,
|
||||
stroke: (thickness: 0.2mm),
|
||||
columns: 4,
|
||||
table.header(
|
||||
[x], [deg], [cos(x)], [sin(x)]
|
||||
),
|
||||
[$0$], [$0°$], [$1$], [$0$],
|
||||
[$pi/6$], [$30°$], [$sqrt(3)/2$], [$1/2$],
|
||||
[$pi/4$], [$45°$], [$sqrt(2)/2$], [$sqrt(2)/2$],
|
||||
[$pi/3$], [$60°$], [$1/2$], [$sqrt(3)/2$],
|
||||
[$pi/2$], [$90°$], [$0$], [$1$],
|
||||
[$2/3pi$], [$120°$], [$-1/2$], [$sqrt(3)/2$],
|
||||
[$3/4pi$], [$135°$], [$-sqrt(2)/2$], [$sqrt(2)/2$],
|
||||
[$5/6pi$], [$150°$], [$-sqrt(3)/2$], [$1/2$],
|
||||
[$pi$], [$180°$], [$-1$], [$0$],
|
||||
[$3/2pi$], [$270°$], [$0$], [$-1$],
|
||||
[$2pi$], [$360°$], [$1$], [$0$]
|
||||
)
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Complexe Zahlen]
|
||||
$z = r dot e^(phi i) = r (cos(phi) + i sin(phi))$
|
||||
@@ -500,21 +474,7 @@
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
#subHeading(fill: colorAllgemein, [Sin-Table])
|
||||
|
||||
#let data = json("sintable.json")
|
||||
#table(
|
||||
columns: data.at("x").len() + 1,
|
||||
rows: data.keys().len(),
|
||||
stroke: none,
|
||||
table.hline(stroke: (thickness: 0.3mm)),
|
||||
fill: (x, y) => if (calc.rem(y, 2) == 0) { color.lighten(colorAllgemein, 10%) } else { white },
|
||||
..for (label) in data.keys() {
|
||||
([*#eval(label, mode: "math")*], table.hline(stroke: (thickness: 0.3mm)), )
|
||||
for i in data.at(label) {
|
||||
(eval(i, mode: "math"),)
|
||||
}
|
||||
}
|
||||
)
|
||||
#sinTable
|
||||
])
|
||||
|
||||
#pagebreak()
|
||||
|
||||
@@ -26,3 +26,20 @@
|
||||
#let MathAlignLeft(e) = {
|
||||
align(left, block(e))
|
||||
}
|
||||
|
||||
#let sinTable = [
|
||||
#let data = json("../sintable.json")
|
||||
#table(
|
||||
columns: data.at("x").len() + 1,
|
||||
rows: data.keys().len(),
|
||||
stroke: none,
|
||||
table.hline(stroke: (thickness: 0.3mm)),
|
||||
fill: (x, y) => if (calc.rem(y, 2) == 0) { color.lighten(gray, 50%) } else { white },
|
||||
..for (label) in data.keys() {
|
||||
([*#eval(label, mode: "math")*], table.hline(stroke: (thickness: 0.3mm)), )
|
||||
for i in data.at(label) {
|
||||
(eval(i, mode: "math"),)
|
||||
}
|
||||
}
|
||||
)
|
||||
]
|
||||
Reference in New Issue
Block a user