SVD started
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 17s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 17s
This commit is contained in:
@@ -16,12 +16,14 @@
|
||||
number-align: center
|
||||
)
|
||||
|
||||
#set text(size: 8pt)
|
||||
|
||||
#place(top+center, scope: "parent", float: true, heading(
|
||||
[Linear Algebra EI]
|
||||
))
|
||||
|
||||
#let colorAllgemein = color.hsl(105.13deg, 92.13%, 75.1%)
|
||||
#let colorFolgen = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorMatrix = color.hsl(202.05deg, 92.13%, 75.1%)
|
||||
#let colorReihen = color.hsl(280deg, 92.13%, 75.1%)
|
||||
#let colorAbbildungen = color.hsl(356.92deg, 92.13%, 75.1%)
|
||||
#let colorGruppen = color.hsl(34.87deg, 92.13%, 75.1%)
|
||||
@@ -173,5 +175,129 @@
|
||||
$op("Rang") f := dim op("Bild") f$
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[Matrix Typen]
|
||||
|
||||
*Einheits Matrix* $I,E$
|
||||
|
||||
*Diagonalmatrix*
|
||||
|
||||
*Symetrisch* $S$: \
|
||||
$A A^T$ ist symetrisch
|
||||
|
||||
*Orthogonal* $O$:
|
||||
|
||||
*Unitair:*
|
||||
|
||||
*postiv-semi-definit* \
|
||||
$forall$ Eigenwerte $>= 0$
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
|
||||
#subHeading(fill: colorMatrix)[Eigenwert und Eigenvektoren ]
|
||||
|
||||
$A in CC^(n times n):$ $n$ Complexe Eigenwerte \
|
||||
$A in RR^(n times n)$
|
||||
|
||||
*Eigentwete bestimmen*
|
||||
|
||||
$A v = lambda v$
|
||||
|
||||
Lösen: $0 = det mat(#mannot.markhl($x_11 - lambda_1$, color: red), x_12, ..., x_(1n);
|
||||
x_21, #mannot.markhl($x_22 - lambda_2$, color: red), ..., x_(2n);
|
||||
dots.v, dots.v, dots.down, dots.v;
|
||||
x_(n 1), x_(n 2), ..., #mannot.markhl($x_(n n) -lambda_n$, color: red)
|
||||
)$
|
||||
|
||||
Charakteristisches Polynom: $chi_(A)$
|
||||
|
||||
|
||||
*Eigenvektor bestimmen*
|
||||
|
||||
Eigentwerte einsetzen: $lambda in {lambda_1, lambda_2, ... lambda}$
|
||||
|
||||
|
||||
*Algebrasche Vielfacheit:* \
|
||||
$sum$ Häufikeit der Nsts von $chi_A$
|
||||
|
||||
*Geometrische Vielfacheit:*\
|
||||
$dim(op("spann")(v_lambda_1, v_lambda_2 ..., v_lambda_n))$ \
|
||||
|
||||
Anzahl der linearunabhänige $v_lambda_i$
|
||||
|
||||
$"Geometrische" <= "Algebrasche"$
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[Diagonalisierung]
|
||||
|
||||
$A = R D R^T$
|
||||
|
||||
$D$: Diagonalmatrix
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[Schur-Zerlegung]
|
||||
immer anwendbar;
|
||||
|
||||
$A in RR^(n times n)\/CC^(n times n)$ zerlegbar in $O^T R O$
|
||||
|
||||
Orthogonal $O,O^T$, Dreiecksmatrix $R$
|
||||
|
||||
$R = mat(lambda_1, *, *,..., *;
|
||||
0, lambda_2, *, ..., *;
|
||||
0, 0, lambda_3, ..., *;
|
||||
dots.v, dots.v, dots.v, dots.down, dots.v;
|
||||
0, 0, 0, ..., lambda_n;
|
||||
)$
|
||||
|
||||
1. Eigenwerte bestimmen $lambda_1, lambda_2, ... lambda_n$
|
||||
2. Eigenvektor $v_lambda_1, v_lambda_2 ..., v_lambda_n$
|
||||
3.
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
#bgBlock(fill: colorMatrix)[
|
||||
#subHeading(fill: colorMatrix)[SVD]
|
||||
|
||||
$A in RR^(n times m)$ zerlegbar in $A = L S R^T$ \
|
||||
$L$ Orthogonal, $S$ Diagonalmatrix, $R$ Orthogonal \
|
||||
$A^T = R S^T L^T$
|
||||
|
||||
|
||||
*1. $A A^T$ berechnen* $A A^T in RR^(n times n) $
|
||||
|
||||
*2. Eigenwerte von $A A^T$ bestimmen* $lambda_1, lambda_2, ... lambda_n$
|
||||
|
||||
*3. $S$ aufstellen* ($S$ hat gleiche Form wie $A$)
|
||||
|
||||
$sigma_i = sqrt(lambda_i) = S in RR^(n x m) =\ mat(
|
||||
sigma_1, 0, 0, ..., 0, 0, ..., 0;
|
||||
0, sigma_2, 0, ..., 0, 0, ..., 0;
|
||||
0, 0, sigma_3, ..., 0, 0, ..., 0;
|
||||
dots.v, dots.v, dots.v, dots.down, dots.v, dots.v, dots.down, dots.v;
|
||||
0, 0, 0, ..., sigma_m, 0, ... , 0
|
||||
)$
|
||||
|
||||
*4. $R$ bestimmen*
|
||||
|
||||
$op("Eig")(lambda_i) = op("kern")(A A^T - lambda_i) ->$
|
||||
|
||||
$A A^T - lambda_i = 0$ (Gaußverfahren)
|
||||
|
||||
$R = 1/sqrt(lambda_i)$
|
||||
|
||||
*5. $L$ bestimmen*
|
||||
|
||||
$L = 1/sqrt(lambda_i) $
|
||||
]
|
||||
|
||||
|
||||
|
||||
|
||||
]
|
||||
|
||||
|
||||
Reference in New Issue
Block a user