Added some idenenties + LHopital
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s

This commit is contained in:
alexander
2026-01-20 00:46:03 +01:00
parent 8aa363b825
commit af0d1d060e

View File

@@ -1,6 +1,9 @@
#import "../lib/common_rewrite.typ" : *
#import "@preview/mannot:0.3.1"
#show math.integral: it => math.limits(math.integral)
#show math.sum: it => math.limits(math.sum)
#set page(
paper: "a4",
margin: (
@@ -40,40 +43,28 @@
#columns(4, gutter: 2mm)[
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Allgemeins]
#grid(
columns: (auto, auto),
row-gutter: 2mm,
column-gutter: 3mm,
[Dreiecksungleichung], [
$abs(x + y) <= abs(x) + abs(y)$ \
$abs(abs(x) - abs(y)) <= abs(x - y)$
],
[Cauchy-Schwarz-Ungleichung], [
$abs(x dot y) <= abs(abs(x) dot abs(y))$
],
[Geometrische Summenformel], [
#MathAlignLeft($ limits(sum)_(k=1)^(n) k = (n(n+1))/2 $)
],
[Bernoulli-Ungleichung ], [
$(1 + a)^n x in RR >= 1 + n a$
],
[Binomialkoeffizient], [
$binom(n, k) = (n!)/(k!(n-k)!)$
],
[Binomische Formel], [
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
],
[Fakultäten], [$ 0! = 1! = 1 $],
[Gausklammer], [
*Dreiecksungleichung* \
$abs(x + y) <= abs(x) + abs(y)$ \
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
*Cauchy-Schwarz-Ungleichung*\
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
*Geometrische Summenformel*\
$sum_(k=1)^(n) k = (n(n+1))/2$ \
*Bernoulli-Ungleichung* \
$(1 + a)^n x in RR >= 1 + n a$ \
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
*Binomische Formel*\
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
*Fakultäten* $0! = 1! = 1$ \
*Gaußklammer*: \
$floor(x) = text("floor")(x)$ \
$ceil(x) = text("ceil")(x)$
],
[Bekannte Werte], [
$ceil(x) = text("ceil")(x)$ \
*Bekannte Werte* \
$e approx 2.71828$ ($2 < e < 3$) \
$pi approx 3.14159$ ($3 < pi < 4$)
]
)
]
#bgBlock(fill: colorAllgemein)[
@@ -84,8 +75,20 @@
#grid(
columns: (1fr, 1fr),
row-gutter: 2mm,
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
grid.cell(
colspan: 2,
align: center,
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
),
grid.cell(
colspan: 2,
align: center,
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
)
)
#subHeading(fill: colorAllgemein)[Trigonmetrie]
*Additionstheorem* \
@@ -93,6 +96,10 @@
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
$arctan(1/x) + arctan(x) = cases(
x > 0 : pi/2,
x < 0 : -pi/2
)$
*Doppelwinkel Formel* \
$cos(2x) = cos^2(x) - sin^2(x)$ \
@@ -176,8 +183,10 @@
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
Cauchyfolge $=>$ Konvergenz)
- $a_n$ unbeschränkt $=>$ divergenz
]
*Konvergent Grenzwert finden*
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
- Von Bekannten Ausdrücken aufbauen
- Fixpunk Gleichung: $a = f(a)$ \
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
@@ -189,6 +198,23 @@
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
- Zwerlegen in Konvergente Teil folgen \
(Vorallem bei $(-1)^n dot a_n$)
*L'Hospital*
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
(Konvergenz gegen $b$, beliebiges $a$)
Bendingungen:
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
2. $g'(x) != 0, x in (a,b)$
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
Kann auch Reksuive angewendet werden!
]
#bgBlock(fill: colorFolgen)[
@@ -212,15 +238,14 @@
#bgBlock(fill: colorFolgen)[
#subHeading(fill: colorFolgen)[Bekannte Folgen]
#grid(
columns: (auto, auto, auto),
columns: (auto, auto),
column-gutter: 4mm,
row-gutter: 2mm,
align: bottom,
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
[],
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
MathAlignLeft($ e^x = lim_(n->infinity) (1 + x/n)^n $),
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
0 &abs(q),
1 &q = 1,
@@ -246,8 +271,6 @@
- *Absolute Konvergenz* \
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
- *Partialsummen* \
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
$=>$ _Absolute Konvergent_
@@ -278,19 +301,6 @@
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
- *Geometrische Reihe*
$limits(sum)_(n=0)^infinity q^n$
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
- *Harmonische Reihe* $limits(sum)_(n=0)^infinity 1/n = +infinity$
- *Reihendarstellungen*
1. $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
2. $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
3. $sin(x) = limits(sum)_(n=0)^infinity $
4. $cos(x) = limits(sum)_(n=0)^infinity $
]
#bgBlock(fill: colorReihen)[
@@ -305,9 +315,16 @@
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
*Andere*
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
*Reihendarstellungen*
#grid(
columns: (1fr, 1fr),
gutter: 3mm,
row-gutter: 2mm,
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
$sin(x) = limits(sum)_(n=0)^infinity $,
$cos(x) = limits(sum)_(n=0)^infinity $
)
]
#colbreak()
@@ -421,7 +438,7 @@
{ color.hsl(180deg, 81.82%, 95.69%) },
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
[$x ln(a x) - x$], [$ln(a x)$], [$1 / x$],
[$x ln(a x) - x$], [$ln(a x)$], [$a / x$],
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
[$e^x$], [$e^x$], [$e^x$],
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
@@ -470,6 +487,50 @@
3. $x$-kürzen sich weg
])
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral])
*Riemann Integral*\
$limits(sum)_(x=a)^(b) f(i)(x_())$
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Integral Type*\
- Eigentliches Int.: $integral_a^b f(x) d x$
- Uneigentliches Int.: \
$limits(lim)_(epsilon -> 0) integral_a^(b + epsilon) f(x) d x$ \
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
*Cauchy-Hauptwert*
$integral_(-infinity)^(+infinity) f(x)$ \
NUR konvergent wenn: \
$limits(lim)_(R -> -infinity) integral_(R)^(a) f(x) d x$ und $limits(lim)_(R -> infinity) integral_(a)^(R) f(x) d x$ konvergent für $a in RR$
$integral_(-infinity)^(infinity) f(x) d x$ existiert \
$=> lim_(M -> infinity) integral_(-M)^(M) f(x) d x = integral_(-infinity)^(infinity) f(x) d x$
*Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
*Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot 1/(g'(x)) d x$
1. Ersetzung: $ d x := d t dot g'(x)$ und $t := g(x)$
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
3. $x$-kürzen sich weg
*Absolute "Konvergenz"* \
Wenn $g(x)$ konvergent,
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
])
]
#bgBlock(fill: colorAllgemein, [
@@ -524,23 +585,4 @@ Konvergenz Radius $R = [0, infinity)$$$
)$
$ R = limsup_(n -> infinity) $
#bgBlock(fill: colorIntegral, [
#subHeading(fill: colorIntegral, [Integral])
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
*Partial Integration*
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
*Subsitution*
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
3. $x$-kürzen sich weg
])