Added some idenenties + LHopital
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 12s
This commit is contained in:
@@ -1,6 +1,9 @@
|
||||
#import "../lib/common_rewrite.typ" : *
|
||||
#import "@preview/mannot:0.3.1"
|
||||
|
||||
#show math.integral: it => math.limits(math.integral)
|
||||
#show math.sum: it => math.limits(math.sum)
|
||||
|
||||
#set page(
|
||||
paper: "a4",
|
||||
margin: (
|
||||
@@ -40,40 +43,28 @@
|
||||
#columns(4, gutter: 2mm)[
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
#subHeading(fill: colorAllgemein)[Allgemeins]
|
||||
#grid(
|
||||
columns: (auto, auto),
|
||||
row-gutter: 2mm,
|
||||
column-gutter: 3mm,
|
||||
[Dreiecksungleichung], [
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$
|
||||
],
|
||||
[Cauchy-Schwarz-Ungleichung], [
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$
|
||||
],
|
||||
[Geometrische Summenformel], [
|
||||
#MathAlignLeft($ limits(sum)_(k=1)^(n) k = (n(n+1))/2 $)
|
||||
],
|
||||
[Bernoulli-Ungleichung ], [
|
||||
$(1 + a)^n x in RR >= 1 + n a$
|
||||
],
|
||||
[Binomialkoeffizient], [
|
||||
$binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
],
|
||||
[Binomische Formel], [
|
||||
#MathAlignLeft($ (a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $)
|
||||
],
|
||||
[Fakultäten], [$ 0! = 1! = 1 $],
|
||||
|
||||
[Gausklammer], [
|
||||
*Dreiecksungleichung* \
|
||||
$abs(x + y) <= abs(x) + abs(y)$ \
|
||||
$abs(abs(x) - abs(y)) <= abs(x - y)$ \
|
||||
*Cauchy-Schwarz-Ungleichung*\
|
||||
$abs(x dot y) <= abs(abs(x) dot abs(y))$ \
|
||||
*Geometrische Summenformel*\
|
||||
$sum_(k=1)^(n) k = (n(n+1))/2$ \
|
||||
*Bernoulli-Ungleichung* \
|
||||
$(1 + a)^n x in RR >= 1 + n a$ \
|
||||
*Binomialkoeffizient* $binom(n, k) = (n!)/(k!(n-k)!)$
|
||||
|
||||
*Binomische Formel*\
|
||||
$(a + b)^n = sum^(n)_(k=0) binom(n,k) a^(n-k) b^k $ \
|
||||
*Fakultäten* $0! = 1! = 1$ \
|
||||
*Gaußklammer*: \
|
||||
$floor(x) = text("floor")(x)$ \
|
||||
$ceil(x) = text("ceil")(x)$
|
||||
],
|
||||
[Bekannte Werte], [
|
||||
$ceil(x) = text("ceil")(x)$ \
|
||||
*Bekannte Werte* \
|
||||
$e approx 2.71828$ ($2 < e < 3$) \
|
||||
$pi approx 3.14159$ ($3 < pi < 4$)
|
||||
]
|
||||
)
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein)[
|
||||
@@ -84,8 +75,20 @@
|
||||
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
row-gutter: 2mm,
|
||||
[$ sin(x) = (e^(i x) - e^(-i x))/(2i) $],
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $]
|
||||
[$ cos(x) = (e^(i x) + e^(-i x))/(2) $],
|
||||
grid.cell(
|
||||
colspan: 2,
|
||||
align: center,
|
||||
$ tan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
),
|
||||
grid.cell(
|
||||
colspan: 2,
|
||||
align: center,
|
||||
$ arctan(x) = 1/2i ln((1+i x)/(1-i x)) $
|
||||
)
|
||||
|
||||
)
|
||||
#subHeading(fill: colorAllgemein)[Trigonmetrie]
|
||||
*Additionstheorem* \
|
||||
@@ -93,6 +96,10 @@
|
||||
$cos(x+y) = cos(x)cos(y) - sin(x)sin(y)$ \
|
||||
$tan(x) + tan(y) = (tan(a) + tan(b))/(1 - tan(a) tan(b))$ \
|
||||
$arctan(x) + arctan(y) = arctan((x+y)/(1 - x y))$ \
|
||||
$arctan(1/x) + arctan(x) = cases(
|
||||
x > 0 : pi/2,
|
||||
x < 0 : -pi/2
|
||||
)$
|
||||
|
||||
*Doppelwinkel Formel* \
|
||||
$cos(2x) = cos^2(x) - sin^2(x)$ \
|
||||
@@ -176,8 +183,10 @@
|
||||
$forall m,n >= n_epsilon : abs(a_n - a_m) < epsilon$ \
|
||||
Cauchyfolge $=>$ Konvergenz)
|
||||
- $a_n$ unbeschränkt $=>$ divergenz
|
||||
]
|
||||
|
||||
*Konvergent Grenzwert finden*
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Folgen Konvergenz Strategien]
|
||||
- Von Bekannten Ausdrücken aufbauen
|
||||
- Fixpunk Gleichung: $a = f(a)$ \
|
||||
für rekusive $a_(n+1) = f(a_n)$ (Zu erst machen!)
|
||||
@@ -189,6 +198,23 @@
|
||||
$b_n -> +infinity$: $c_n <= b_n $, wenn $a_n -> +infinity$
|
||||
- Zwerlegen in Konvergente Teil folgen \
|
||||
(Vorallem bei $(-1)^n dot a_n$)
|
||||
|
||||
|
||||
*L'Hospital*
|
||||
|
||||
$x in (a,b): limits(lim)_(x->b)f(x)/g(x)$
|
||||
|
||||
(Konvergenz gegen $b$, beliebiges $a$)
|
||||
|
||||
Bendingungen:
|
||||
1. $limits(lim)_(x->b)f(x) = limits(lim)_(x->b)g(x)= 0 "oder" infinity$
|
||||
2. $g'(x) != 0, x in (a,b)$
|
||||
3. $limits(lim)_(x->b) (f'(x))/(g'(x))$ existiert
|
||||
|
||||
$=> limits(lim)_(x->b) (f'(x))/(g'(x)) = limits(lim)_(x->b) (f(x))/(g(x))$
|
||||
|
||||
Kann auch Reksuive angewendet werden!
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
@@ -212,15 +238,14 @@
|
||||
#bgBlock(fill: colorFolgen)[
|
||||
#subHeading(fill: colorFolgen)[Bekannte Folgen]
|
||||
#grid(
|
||||
columns: (auto, auto, auto),
|
||||
columns: (auto, auto),
|
||||
column-gutter: 4mm,
|
||||
row-gutter: 2mm,
|
||||
align: bottom,
|
||||
MathAlignLeft($ lim_(n->infinity) 1/n = 0 $),
|
||||
[],
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ exp(x) = e^x = lim_(n->infinity) (1 + x/n)^n $)),
|
||||
MathAlignLeft($ lim_(n->infinity) sqrt(n) = + infinity $),
|
||||
MathAlignLeft($ lim_(n->infinity) k = k, k in RR $),
|
||||
MathAlignLeft($ e^x = lim_(n->infinity) (1 + x/n)^n $),
|
||||
grid.cell(colspan: 2, MathAlignLeft($ lim_(n->infinity) q^n = cases(
|
||||
0 &abs(q),
|
||||
1 &q = 1,
|
||||
@@ -246,8 +271,6 @@
|
||||
- *Absolute Konvergenz* \
|
||||
$limits(sum)_(n=1)^infinity abs(a_n) = a => limits(sum)_(n=1)^infinity a_n$ konvergent
|
||||
|
||||
|
||||
|
||||
- *Partialsummen* \
|
||||
ALLE Partialsummen von $limits(sum)_(k=1)^infinity abs(a)$ beschränkt\
|
||||
$=>$ _Absolute Konvergent_
|
||||
@@ -278,19 +301,6 @@
|
||||
2. $rho = lim_(n -> infinity) root(n, abs(a_(n+1))) $ \
|
||||
|
||||
divergent: $rho > 1$, keine Aussage $rho = 1$, konvergent $rho < 1$
|
||||
|
||||
- *Geometrische Reihe*
|
||||
$limits(sum)_(n=0)^infinity q^n$
|
||||
- konvergent $abs(q) < 1$, divergent $abs(q) >= 1$
|
||||
- Grenzwert: (Muss $n=0$) $=1/(1-q)$
|
||||
- *Harmonische Reihe* $limits(sum)_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
- *Reihendarstellungen*
|
||||
1. $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
2. $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
3. $sin(x) = limits(sum)_(n=0)^infinity $
|
||||
4. $cos(x) = limits(sum)_(n=0)^infinity $
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorReihen)[
|
||||
@@ -305,9 +315,16 @@
|
||||
|
||||
*Harmonische Reihe:* $sum_(n=0)^infinity 1/n = +infinity$
|
||||
|
||||
*Andere*
|
||||
- $e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$
|
||||
- $ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$
|
||||
*Reihendarstellungen*
|
||||
#grid(
|
||||
columns: (1fr, 1fr),
|
||||
gutter: 3mm,
|
||||
row-gutter: 2mm,
|
||||
$e^x = limits(sum)_(n=0)^infinity (x^n)/(n!)$,
|
||||
$ln(x) = limits(sum)_(n=0)^infinity (-1)^n x^(n+1)$,
|
||||
$sin(x) = limits(sum)_(n=0)^infinity $,
|
||||
$cos(x) = limits(sum)_(n=0)^infinity $
|
||||
)
|
||||
]
|
||||
|
||||
#colbreak()
|
||||
@@ -421,7 +438,7 @@
|
||||
{ color.hsl(180deg, 81.82%, 95.69%) },
|
||||
[$1/(q + x) x^(q+1)$], [$x^q$], [$q x^(q-1)$],
|
||||
[$ln abs(x)$], [$1/x$], [$-1/x^2$],
|
||||
[$x ln(a x) - x$], [$ln(a x)$], [$1 / x$],
|
||||
[$x ln(a x) - x$], [$ln(a x)$], [$a / x$],
|
||||
[$2/3 sqrt(a x^3)$], [$sqrt(a x)$], [$a/(2 sqrt(a x))$],
|
||||
[$e^x$], [$e^x$], [$e^x$],
|
||||
[$a^x/ln(a)$], [$a^x$], [$a^x ln(a)$],
|
||||
@@ -470,6 +487,50 @@
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
*Riemann Integral*\
|
||||
$limits(sum)_(x=a)^(b) f(i)(x_())$
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Integral Type*\
|
||||
- Eigentliches Int.: $integral_a^b f(x) d x$
|
||||
- Uneigentliches Int.: \
|
||||
$limits(lim)_(epsilon -> 0) integral_a^(b + epsilon) f(x) d x$ \
|
||||
$limits(lim)_(epsilon -> plus.minus infinity) integral_a^(epsilon) f(x) d x$
|
||||
- Unbestimmtes Int.: $integral f(x) d x = F(x) + c, c in RR$- Uneigentliches Int.:
|
||||
|
||||
|
||||
*Cauchy-Hauptwert*
|
||||
|
||||
$integral_(-infinity)^(+infinity) f(x)$ \
|
||||
NUR konvergent wenn: \
|
||||
$limits(lim)_(R -> -infinity) integral_(R)^(a) f(x) d x$ und $limits(lim)_(R -> infinity) integral_(a)^(R) f(x) d x$ konvergent für $a in RR$
|
||||
|
||||
$integral_(-infinity)^(infinity) f(x) d x$ existiert \
|
||||
$=> lim_(M -> infinity) integral_(-M)^(M) f(x) d x = integral_(-infinity)^(infinity) f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot 1/(g'(x)) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot g'(x)$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
|
||||
*Absolute "Konvergenz"* \
|
||||
Wenn $g(x)$ konvergent,
|
||||
$abs(f(x)) <= g(x) => $ $f(x)$ konvergent
|
||||
])
|
||||
|
||||
]
|
||||
|
||||
#bgBlock(fill: colorAllgemein, [
|
||||
@@ -524,23 +585,4 @@ Konvergenz Radius $R = [0, infinity)$$$
|
||||
)$
|
||||
|
||||
$ R = limsup_(n -> infinity) $
|
||||
#bgBlock(fill: colorIntegral, [
|
||||
#subHeading(fill: colorIntegral, [Integral])
|
||||
|
||||
Summen: $integral f(x) + g(x) d x = integral f(x) d x + integral g(x)$
|
||||
|
||||
Vorfaktoren: $integral lambda f(x) d x = lambda f(x) d x$
|
||||
|
||||
*Partial Integration*
|
||||
|
||||
$integral u(x) dot v'(x) d x = u(x)v(x) - integral u'(x) dot v(x)$
|
||||
|
||||
*Subsitution*
|
||||
|
||||
$integral_(x_0)^(x_1) f\(underbrace(g(x), "t")\) dot g'(x) d x$
|
||||
|
||||
1. Ersetzung: $ d x := d t dot 1/(g'(x))$ und $t := g(x)$
|
||||
2. Grenzen: $t_0 = g(x_0)$, $t_1 = g(x_1)$
|
||||
3. $x$-kürzen sich weg
|
||||
])
|
||||
|
||||
|
||||
Reference in New Issue
Block a user