started table

This commit is contained in:
alexander
2026-02-02 14:45:59 +01:00
parent 68b599eea4
commit ad2c7f2919
2 changed files with 303 additions and 193 deletions

View File

@@ -920,11 +920,6 @@
) )
] ]
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Complex Zahlen]
]
// Complex AC // Complex AC
#bgBlock(fill: colorComplexAC)[ #bgBlock(fill: colorComplexAC)[
#subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung] #subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung]
@@ -970,6 +965,8 @@
$P_w = U_m^2 / 2R = (I_m^2 R)/2$ $P_w = U_m^2 / 2R = (I_m^2 R)/2$
$P = 1/2 U I^* = 1/2 abs(U)^2 Y^* = 1/2 abs(I)^2 Z^*$
$U_"eff" = U_m/sqrt(2), I_"eff" = I_m / sqrt(2)$ $U_"eff" = U_m/sqrt(2), I_"eff" = I_m / sqrt(2)$
] ]
@@ -991,10 +988,124 @@
#pagebreak() #pagebreak()
#bgBlock(fill: colorZweiTore, width: 100%)[
#subHeading(fill: colorZweiTore)[Zwei-Tor-Übersichts]
#table(
fill: (x, y) => if calc.rem(y, 2) == 0 { tableFillHigh } else { tableFillLow },
columns: (auto, auto, auto, 1fr, 1fr, 1fr),
[*Name*],
[*Schaltbild*],
[*Ersatz-Schaltbild*],
[*Eigenschaften*],
[*Beschreibung*],
[*Knotenspannungs Analyse*],
[Nullor],
[],
[],
[],
[$A = mat(0, 0; 0, 0)$],
[],
[OpAmp \ lin],
[],
[],
[],
[],
[],
[OpAmp \ $U_"sat+"$],
[],
[],
[],
[],
[],
[OpAmp \ $U_"sat-"$],
[],
[],
[],
[],
[],
[VCVS],
[],
[],
[],
[$H' = mat(0, 0; mu, 0) quad A = mat(1/mu 0; 0, 0)$],
[],
[VCCS],
[],
[],
[],
[$G = mat(0, 0; g, 0) quad A = mat(0, -1/g; 0, 0)$],
[],
[CCVS],
[],
[],
[],
[$R = mat(0, 0, r, 0) quad A = mat(0, 0; 1/r, 0)$],
[],
[CCCS],
[],
[],
[],
[$H = mat(0, 0; beta, 0) quad A = mat(0, 0; 0, -1/beta)$],
[],
[Übertrager],
[],
[],
[],
[],
[],
[Gyrator],
[],
[],
[
- Antireziprok, Antisymetrisch
- Auch Positiv-Immitanz-Inverter
],
[$R = mat(0, -R_d; R_d, 0) quad G = mat(0, G_d; -G_d, 0) \ A = mat(0, R_d; 1/R_d, 0) quad A' = mat(0, -R_d; -1/R_d, 0)$],
[],
[NIK],
[],
[],
[],
[
- Akitv
- Antireziprok
- Symetrisch für $abs(k) = 1$
],
[$H = mat(0, -k; -k, 0) quad H' = mat(0, -1/k; -1/k, 0); A = mat(-k, 0; 0, 1/k) quad A'= mat(-1/k, 0; 0, k)$],
[T-Glied],
[],
[],
[],
[
],
[],
[$pi$-Glied],
[],
[],
[
]
)
]
// Tor Eigenschaften // Tor Eigenschaften
#place( #bgBlock(fill: colorEigenschaften, width: 100%)[
bottom, float: true, scope: "parent",
bgBlock(fill: colorEigenschaften, width: 100%)[
#subHeading(fill: colorEigenschaften)[Tor Eigenschaften] #subHeading(fill: colorEigenschaften)[Tor Eigenschaften]
#table( #table(
@@ -1082,9 +1193,7 @@
[$det(M) != 0$, Alle Eintrag $!= 0$] [$det(M) != 0$, Alle Eintrag $!= 0$]
) )
] ]
)
#place(bottom+left, scope: "parent", float: true)[
#bgBlock(fill: colorZweiTore)[ #bgBlock(fill: colorZweiTore)[
#set text(size: 10pt) #set text(size: 10pt)
@@ -1179,4 +1288,3 @@
) )
] ]
]

View File

@@ -1,4 +1,4 @@
#let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm)) #let bgBlock(body, fill: color, width: 100%) = block(body, fill:fill.lighten(80%), width: width, inset: (bottom: 2mm, left: 2mm, right: 2mm,))
#let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm)) #let SeperatorLine = line(length: 100%, stroke: (paint: black, thickness: 0.3mm))
#let MathAlignLeft(e) = { #let MathAlignLeft(e) = {
@@ -6,7 +6,7 @@
} }
#let subHeading(body, fill: color) = { #let subHeading(body, fill: color) = {
box( move(dx: -2mm, dy: 0mm, box(
align( align(
top+center, top+center,
text( text(
@@ -17,10 +17,10 @@
) )
), ),
fill: fill, fill: fill,
width: 100%, width: 100% + 4mm,
inset: 1mm, inset: 1mm,
height: auto height: auto
) ))
} }
#let MathAlignLeft(e) = { #let MathAlignLeft(e) = {
@@ -58,12 +58,14 @@
#let ComplexNumbersSection(i: $i$) = [ #let ComplexNumbersSection(i: $i$) = [
$1/#i = #i^(-1) = -#i quad quad #i^2=-1 quad quad sqrt(#i) = 1/sqrt(2) + 1/sqrt(2)#i$ $1/#i = #i^(-1) = -#i quad quad #i^2=-1 quad quad sqrt(#i) = 1/sqrt(2) + 1/sqrt(2)#i$
$z in CC = a + b #i quad quad quad z = r dot e^(phi #i)$ \ $z in CC = a + b #i quad quad quad z = r dot e^(#i phi)$ \
$z_0 + z_1 = (a_0 + a_1) + (b_0 + b_1) #i$\ $z_0 + z_1 = (a_0 + a_1) + (b_0 + b_1) #i$\
$z_0 dot z_1 = (a_1 a_2 - b_1 b_2) + #i (a_1b_2 + a_2 b_1) = r_0 r_1 e^(#i (phi_0 + phi_1))$\ $z_0 dot z_1 = (a_1 a_2 - b_1 b_2) + #i (a_1b_2 + a_2 b_1) = r_0 r_1 e^(#i (phi_0 + phi_1))$\
$z^x = r^x dot e^(phi #i dot x) quad x in RR$ \ $z^x = r^x dot e^(phi #i dot x) quad x in RR$ \
$z_0/z_1 = r_0/r_1 e^(#i (phi_0 - phi_1)) quad quad quad$ $z_0/z_1 = r_0/r_1 e^(#i (phi_0 - phi_1)) quad quad quad$
$z^* = a - #i b = r e^(-#i phi)$
$r = abs(z) quad phi = cases( $r = abs(z) quad phi = cases(
+ arccos(a/r) space : space b >= 0, + arccos(a/r) space : space b >= 0,
- arccos(a/r) space : space b < 0, - arccos(a/r) space : space b < 0,