Fixed complex
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 21s

This commit is contained in:
alexander
2026-02-02 12:40:23 +01:00
parent d3e4df0a3f
commit 68b599eea4
2 changed files with 19 additions and 4 deletions

View File

@@ -262,7 +262,7 @@
$ip(O v, O w) = ip(v, w)$
],
[*Unitair*], [
$V^* )$
],
[*Diagonaliserbar*], [
$exists A = B D B^(-1)$, $D$ diagonal,
@@ -398,6 +398,22 @@
#bgBlock(fill: colorMatrix)[
#subHeading(fill: colorMatrix)[Matrix Normen]
$|| dot ||_M$ Matrix Norm, $|| dot ||_V$ Vektornorm
Generisch Vektor Norm: $|| v ||_p = root(p, sum_(k=1)^n (x_k)^p)$
- submultiplikativ: $||A B||_"M" <= ||A||||B||$
- verträglich mit einer Vektornorm: $||A v||_"V" <= ||A||_"M" ||v||_"V"$
*Frobenius-Norm* $||A||_"M" = sqrt(sum_(i=1)^m sum_(j=1)^n a_(m n)^2)$
*Induzierte Norm* $||A||_"M" = sup_(v in V without {0}) (||A v||_V)/(||v||_V)$\
$ = sup_(||v|| = 1) (||A v||_V)/(||v||_V)$
- submultiplikativ
- verträglich mit einer Vektornorm $||dot||_V$
*maximale Spaltensumme* $||A||_r = max_(1<= i <= n) sum_(j=1)^n |a_(j)|$
]
#bgBlock(fill: colorMatrix)[

View File

@@ -6,9 +6,8 @@
#let Bild(x) = $op("Bild")(#x)$
#let Rang(x) = $op("Rang")(#x)$
#let Eig(x) = $op("Eig")(#x)$
#let lim = $limits("lim")$
#let ip(x, y) = $lr(angle.l #x, #y angle.r)$
#show math.integral: it => math.limits(math.integral)
#show math.sum: it => math.limits(math.sum)
#let lim = $limits("lim")$
#show math.sum: it => math.limits(math.sum)