Change stuff
All checks were successful
Build Typst PDFs (Docker) / build-typst (push) Successful in 20s

This commit is contained in:
alexander
2026-01-30 23:58:13 +01:00
parent d113b66dcd
commit 1c19402b01
2 changed files with 56 additions and 16 deletions

View File

@@ -28,8 +28,8 @@
], ],
) )
#let pTypeFill = rgb("#dd5959"); #let pTypeFill = rgb("#dd5959").lighten(10%);
#let nTypeFill = rgb("#5997dd"); #let nTypeFill = rgb("#5997dd").lighten(10%);
#place(top+center, scope: "parent", float: true, heading( #place(top+center, scope: "parent", float: true, heading(
[Digitaltechnik] [Digitaltechnik]
@@ -235,14 +235,14 @@
columns: (1fr, 1fr), columns: (1fr, 1fr),
column-gutter: 6mm, column-gutter: 6mm,
align: center, align: center,
[#align(center)[*PMOS*]], [#align(center)[*CMOS*]], [#align(center)[*NMOS*]], [#align(center)[*PMOS*]],
grid.cell(inset: 2mm, grid.cell(inset: 2mm,
align(center, align(center,
zap.circuit({ zap.circuit({
import "../lib/circuit.typ" : * import "../lib/circuit.typ" : *
registerAllCustom(); registerAllCustom();
fet("T", (0,0), type: "P", scale: 150%); fet("T", (0,0), type: "N", scale: 150%);
}) })
) )
), ),
@@ -252,7 +252,7 @@
import "../lib/circuit.typ" : * import "../lib/circuit.typ" : *
registerAllCustom(); registerAllCustom();
fet("T", (0,0), type: "N", scale: 150%); fet("T", (0,0), type: "P", scale: 150%);
}), }),
) )
), ),
@@ -273,9 +273,9 @@
cetz.decorations.brace((2.5,-0.6),(1.5,-0.6)) cetz.decorations.brace((2.5,-0.6),(1.5,-0.6))
content((2, -1.3), "Channel") content((2, -1.3), "Channel")
content((3, -0.25), "N") content((3, -0.25), $"n"^+$)
content((1, -0.25), "N") content((1, -0.25), $"n"^+$)
content((0.5, -0.75), "P") content((0.5, -0.75), "p")
content((3, 0.5), "S") content((3, 0.5), "S")
content((1, 0.5), "D") content((1, 0.5), "D")
@@ -299,18 +299,33 @@
cetz.decorations.brace((2.5,-0.6),(1.5,-0.6)) cetz.decorations.brace((2.5,-0.6),(1.5,-0.6))
content((2, -1.3), "Channel") content((2, -1.3), "Channel")
content((3, -0.25), "P") content((3, -0.25), $"p"^+$)
content((1, -0.25), "P") content((1, -0.25), $"p"^+$)
content((0.5, -0.75), "N") content((0.5, -0.75), "n")
content((3, 0.5), "S") content((3, 0.5), "S")
content((1, 0.5), "D") content((1, 0.5), "D")
content((2, 0.5), "G") content((2, 0.5), "G")
}) })
), ),
) )
*Drain Strom:*
NMOS: $I_"Dn" = cases(
gap: #0.6em,
0 & 0 < U_"GS" < U_t,
beta_n (U_"GS" - U_t - U_"DS" / 2) U_"DS" quad & cases(delim: #none, U_"GS" >= U_t, 0 < U_"DS" < U_"GS" - U_t),
beta_n/2 (U_"GS" - U_"th")^2 & cases(delim: #none, U_"GS" >= U_t, U_"DS" > U_"GS" - U_t)
)$
PMOS: $I_"Dp" = cases(
gap: #0.6em,
0 & 0 > U_"GS" > U_t,
beta_p (U_"GS" - U_t - U_"DS" / 2) U_"DS" quad & cases(delim: #none, U_"GS" <= U_t, 0 > U_"DS" > U_"GS" - U_t),
beta_p/2 (U_"GS" - U_"th")^2 & cases(delim: #none, U_"GS" <= U_t, U_"DS" < U_"GS" - U_t)
)
$
] ]
// Quine McCluskey // Quine McCluskey
@@ -442,7 +457,7 @@
[ [
*NAND* *NAND*
$overline(A dot B) = Y$ $overline(A dot B) = Z$
], ],
) )
] ]

View File

@@ -732,7 +732,7 @@
$E_L = Phi^2/2L = (L i^2)/2$ $E_L = Phi^2/2L = (L i^2)/2$
], ],
[ [
$C$: Admetanze $hat(=) G$ $C$: Admetanz $hat(=) G$
], [], ], [],
[ [
$L$: Impedanz $hat(=) R$ $L$: Impedanz $hat(=) R$
@@ -761,6 +761,8 @@
#subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung] #subHeading(fill: colorComplexAC)[Komplex Wechselstrom Rechnnung]
Im Eingeschwungenem Zustand Im Eingeschwungenem Zustand
$u(t) =U_m "Re"{e^(j omega t + phi)}$
$u(t) = U_m cos(omega t + alpha)$ \ $u(t) = U_m cos(omega t + alpha)$ \
$i(t) = I_m cos(omega t + beta)$ $i(t) = I_m cos(omega t + beta)$
@@ -781,7 +783,30 @@
tan(phi) = (U_2 sin(phi))/(U_1 + U_2 cos(phi)) tan(phi) = (U_2 sin(phi))/(U_1 + U_2 cos(phi))
$ $
** *Levi's Lustig Leistung*
$underline(S) = underline(U) dot underline(I)^*$\
#table(
columns: (auto, 1fr, auto),
[Scheinleitsung], [$abs(underline(S))$], [$["VA"]$],
[Wirkleistung], [$P = "Real"(underline(S)) $], [$["W"]$],
[Blindleistung], [$Q = "Imag"(underline(S))$], [$["var"]$]
)
]
// Komplexe Zahlen
#bgBlock(fill: colorAllgemein)[
#subHeading(fill: colorAllgemein)[Komplexe Zahlen]
#grid(
columns: (auto, auto),
row-gutter: 2mm,
column-gutter: 3mm,
[Euler-Darstellung], $A e^(j phi)$,
[Catesiche-Darstellung], $a + b j$
)
] ]